![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1357 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1340 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 2albii 1360 hbxfrbi 1361 nfbii 1362 19.26-2 1371 19.26-3an 1372 alrot3 1374 alrot4 1375 albiim 1376 2albiim 1377 alnex 1388 nfalt 1470 aaanh 1478 aaan 1479 alinexa 1494 exintrbi 1524 19.21-2 1557 19.31r 1571 equsalh 1614 equsal 1615 sbcof2 1691 dvelimfALT2 1698 19.23vv 1764 sbanv 1769 pm11.53 1775 nfsbxy 1818 nfsbxyt 1819 sbcomxyyz 1846 sb9 1855 sbnf2 1857 2sb6 1860 sbcom2v 1861 sb6a 1864 2sb6rf 1866 sbalyz 1875 sbal 1876 sbal1yz 1877 sbal1 1878 sbalv 1881 2exsb 1885 nfsb4t 1890 dvelimf 1891 dveeq1 1895 sbal2 1898 sb8eu 1913 sb8euh 1923 eu1 1925 eu2 1944 mo3h 1953 moanim 1974 2eu4 1993 exists1 1996 eqcom 2042 hblem 2145 abeq2 2146 abeq1 2147 nfceqi 2174 abid2f 2202 ralbii2 2334 r2alf 2341 nfraldya 2358 r3al 2366 r19.21t 2394 r19.23t 2423 rabid2 2486 rabbi 2487 ralv 2571 ceqsralt 2581 gencbval 2602 ralab 2701 ralrab2 2706 euind 2728 reu2 2729 reu3 2731 rmo4 2734 reu8 2737 rmoim 2740 2reuswapdc 2743 reuind 2744 2rmorex 2745 ra5 2846 rmo2ilem 2847 rmo3 2849 dfss2 2934 ss2ab 3008 ss2rab 3016 rabss 3017 uniiunlem 3028 ssequn1 3113 unss 3117 ralunb 3124 ssin 3159 ssddif 3171 n0rf 3233 eq0 3239 eqv 3240 rabeq0 3247 abeq0 3248 disj 3268 disj3 3272 rgenm 3323 pwss 3374 ralsnsg 3407 ralsns 3408 disjsn 3432 euabsn2 3439 snss 3494 snsssn 3532 dfnfc2 3598 uni0b 3605 unissb 3610 elintrab 3627 ssintrab 3638 intun 3646 intpr 3647 dfiin2g 3690 iunss 3698 dfdisj2 3747 cbvdisj 3755 dftr2 3856 dftr5 3857 trint 3869 zfnuleu 3881 vprc 3888 inex1 3891 repizf2lem 3914 axpweq 3924 zfpow 3928 axpow2 3929 axpow3 3930 zfpair2 3945 ssextss 3956 frirrg 4087 sucel 4147 zfun 4171 uniex2 4173 setindel 4263 setind 4264 elirr 4266 en2lp 4278 zfregfr 4298 tfi 4305 peano5 4321 ssrel 4428 ssrel2 4430 eqrelrel 4441 reliun 4458 raliunxp 4477 relop 4486 dmopab3 4548 dm0rn0 4552 reldm0 4553 cotr 4706 issref 4707 asymref 4710 intirr 4711 sb8iota 4874 dffun2 4912 dffun4 4913 dffun6f 4915 dffun4f 4918 dffun7 4928 funopab 4935 funcnv2 4959 funcnv 4960 funcnveq 4962 fun2cnv 4963 fun11 4966 fununi 4967 funcnvuni 4968 funimaexglem 4982 fnres 5015 fnopabg 5022 rexrnmpt 5310 dff13 5407 oprabidlem 5536 eqoprab2b 5563 mpt22eqb 5610 ralrnmpt2 5615 dfer2 6107 ltexprlemdisj 6704 recexprlemdisj 6728 bj-nfalt 9904 bdceq 9962 bdcriota 10003 bj-axempty2 10014 bj-vprc 10016 bdinex1 10019 bj-zfpair2 10030 bj-uniex2 10036 bj-ssom 10060 peano5setOLD 10065 bj-inf2vnlem2 10096 |
Copyright terms: Public domain | W3C validator |