ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setindel Structured version   Unicode version

Theorem setindel 4221
Description: -Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
Assertion
Ref Expression
setindel  S  S  S  _V
Distinct variable group:   ,, S

Proof of Theorem setindel
StepHypRef Expression
1 clelsb3 2139 . . . . . . 7  S  S
21ralbii 2324 . . . . . 6  S  S
3 df-ral 2305 . . . . . 6  S  S
42, 3bitri 173 . . . . 5  S  S
54imbi1i 227 . . . 4  S  S  S  S
65albii 1356 . . 3  S  S  S  S
7 ax-setind 4220 . . 3  S  S  S
86, 7sylbir 125 . 2  S  S  S
9 eqv 3234 . 2  S  _V  S
108, 9sylibr 137 1  S  S  S  _V
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240   wceq 1242   wcel 1390  wsb 1642  wral 2300   _Vcvv 2551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-setind 4220
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-ral 2305  df-v 2553
This theorem is referenced by:  setind  4222
  Copyright terms: Public domain W3C validator