ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-i12 Structured version   Unicode version

Axiom ax-i12 1395
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever is distinct from and , and is true, then quantified with is also true. In other words, is irrelevant to the truth of . Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom has been modified from the original ax-12 1399 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.)

Assertion
Ref Expression
ax-i12

Detailed syntax breakdown of Axiom ax-i12
StepHypRef Expression
1 vz . . . 4  setvar
2 vx . . . 4  setvar
31, 2weq 1389 . . 3
43, 1wal 1240 . 2
5 vy . . . . 5  setvar
61, 5weq 1389 . . . 4
76, 1wal 1240 . . 3
82, 5weq 1389 . . . . 5
98, 1wal 1240 . . . . 5
108, 9wi 4 . . . 4
1110, 1wal 1240 . . 3
127, 11wo 628 . 2
134, 12wo 628 1
Colors of variables: wff set class
This axiom is referenced by:  ax-12  1399  ax12or  1400  dveeq2  1693  dveeq2or  1694  dvelimALT  1883  dvelimfv  1884
  Copyright terms: Public domain W3C validator