Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimALT | Unicode version |
Description: Version of dvelim 1893 that doesn't use ax-10 1396. Because it has different distinct variable constraints than dvelim 1893 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvelimALT.1 | |
dvelimALT.2 |
Ref | Expression |
---|---|
dvelimALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . . . 4 | |
2 | ax-i12 1398 | . . . . . . . . 9 | |
3 | orcom 647 | . . . . . . . . . 10 | |
4 | 3 | orbi2i 679 | . . . . . . . . 9 |
5 | 2, 4 | mpbi 133 | . . . . . . . 8 |
6 | orass 684 | . . . . . . . 8 | |
7 | 5, 6 | mpbir 134 | . . . . . . 7 |
8 | nfa1 1434 | . . . . . . . . . . 11 | |
9 | ax16ALT 1739 | . . . . . . . . . . 11 | |
10 | 8, 9 | nfd 1416 | . . . . . . . . . 10 |
11 | dvelimALT.1 | . . . . . . . . . . . 12 | |
12 | 11 | nfi 1351 | . . . . . . . . . . 11 |
13 | 12 | a1i 9 | . . . . . . . . . 10 |
14 | 10, 13 | nfimd 1477 | . . . . . . . . 9 |
15 | df-nf 1350 | . . . . . . . . . 10 | |
16 | id 19 | . . . . . . . . . . 11 | |
17 | 12 | a1i 9 | . . . . . . . . . . 11 |
18 | 16, 17 | nfimd 1477 | . . . . . . . . . 10 |
19 | 15, 18 | sylbir 125 | . . . . . . . . 9 |
20 | 14, 19 | jaoi 636 | . . . . . . . 8 |
21 | 20 | orim1i 677 | . . . . . . 7 |
22 | 7, 21 | ax-mp 7 | . . . . . 6 |
23 | orcom 647 | . . . . . 6 | |
24 | 22, 23 | mpbi 133 | . . . . 5 |
25 | 24 | ori 642 | . . . 4 |
26 | 1, 25 | nfald 1643 | . . 3 |
27 | ax-17 1419 | . . . . 5 | |
28 | dvelimALT.2 | . . . . 5 | |
29 | 27, 28 | equsalh 1614 | . . . 4 |
30 | 29 | nfbii 1362 | . . 3 |
31 | 26, 30 | sylib 127 | . 2 |
32 | 31 | nfrd 1413 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 98 wo 629 wal 1241 wnf 1349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: hbsb4 1888 |
Copyright terms: Public domain | W3C validator |