ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimALT Unicode version

Theorem dvelimALT 1886
Description: Version of dvelim 1893 that doesn't use ax-10 1396. Because it has different distinct variable constraints than dvelim 1893 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvelimALT.1  |-  ( ph  ->  A. x ph )
dvelimALT.2  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
dvelimALT  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Distinct variable groups:    ps, z    x, z    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)

Proof of Theorem dvelimALT
StepHypRef Expression
1 nfv 1421 . . . 4  |-  F/ z  -.  A. x  x  =  y
2 ax-i12 1398 . . . . . . . . 9  |-  ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )
3 orcom 647 . . . . . . . . . 10  |-  ( ( A. x  x  =  y  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  <->  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) )
43orbi2i 679 . . . . . . . . 9  |-  ( ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )  <->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) ) )
52, 4mpbi 133 . . . . . . . 8  |-  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) )
6 orass 684 . . . . . . . 8  |-  ( ( ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  <->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) ) )
75, 6mpbir 134 . . . . . . 7  |-  ( ( A. x  x  =  z  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  \/ 
A. x  x  =  y )
8 nfa1 1434 . . . . . . . . . . 11  |-  F/ x A. x  x  =  z
9 ax16ALT 1739 . . . . . . . . . . 11  |-  ( A. x  x  =  z  ->  ( z  =  y  ->  A. x  z  =  y ) )
108, 9nfd 1416 . . . . . . . . . 10  |-  ( A. x  x  =  z  ->  F/ x  z  =  y )
11 dvelimALT.1 . . . . . . . . . . . 12  |-  ( ph  ->  A. x ph )
1211nfi 1351 . . . . . . . . . . 11  |-  F/ x ph
1312a1i 9 . . . . . . . . . 10  |-  ( A. x  x  =  z  ->  F/ x ph )
1410, 13nfimd 1477 . . . . . . . . 9  |-  ( A. x  x  =  z  ->  F/ x ( z  =  y  ->  ph )
)
15 df-nf 1350 . . . . . . . . . 10  |-  ( F/ x  z  =  y  <->  A. x ( z  =  y  ->  A. x  z  =  y )
)
16 id 19 . . . . . . . . . . 11  |-  ( F/ x  z  =  y  ->  F/ x  z  =  y )
1712a1i 9 . . . . . . . . . . 11  |-  ( F/ x  z  =  y  ->  F/ x ph )
1816, 17nfimd 1477 . . . . . . . . . 10  |-  ( F/ x  z  =  y  ->  F/ x ( z  =  y  ->  ph ) )
1915, 18sylbir 125 . . . . . . . . 9  |-  ( A. x ( z  =  y  ->  A. x  z  =  y )  ->  F/ x ( z  =  y  ->  ph )
)
2014, 19jaoi 636 . . . . . . . 8  |-  ( ( A. x  x  =  z  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  ->  F/ x ( z  =  y  ->  ph ) )
2120orim1i 677 . . . . . . 7  |-  ( ( ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  ->  ( F/ x ( z  =  y  ->  ph )  \/  A. x  x  =  y )
)
227, 21ax-mp 7 . . . . . 6  |-  ( F/ x ( z  =  y  ->  ph )  \/ 
A. x  x  =  y )
23 orcom 647 . . . . . 6  |-  ( ( F/ x ( z  =  y  ->  ph )  \/  A. x  x  =  y )  <->  ( A. x  x  =  y  \/  F/ x ( z  =  y  ->  ph )
) )
2422, 23mpbi 133 . . . . 5  |-  ( A. x  x  =  y  \/  F/ x ( z  =  y  ->  ph )
)
2524ori 642 . . . 4  |-  ( -. 
A. x  x  =  y  ->  F/ x
( z  =  y  ->  ph ) )
261, 25nfald 1643 . . 3  |-  ( -. 
A. x  x  =  y  ->  F/ x A. z ( z  =  y  ->  ph ) )
27 ax-17 1419 . . . . 5  |-  ( ps 
->  A. z ps )
28 dvelimALT.2 . . . . 5  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
2927, 28equsalh 1614 . . . 4  |-  ( A. z ( z  =  y  ->  ph )  <->  ps )
3029nfbii 1362 . . 3  |-  ( F/ x A. z ( z  =  y  ->  ph )  <->  F/ x ps )
3126, 30sylib 127 . 2  |-  ( -. 
A. x  x  =  y  ->  F/ x ps )
3231nfrd 1413 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 98    \/ wo 629   A.wal 1241   F/wnf 1349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  hbsb4  1888
  Copyright terms: Public domain W3C validator