HomeHome Intuitionistic Logic Explorer
Theorem List (p. 43 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrabxfrd 4201* Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ch. (Contributed by NM, 16-Jan-2012.)
 |-  F/_ y B   &    |-  F/_ y C   &    |-  (
 ( ph  /\  y  e.  D )  ->  A  e.  D )   &    |-  ( x  =  A  ->  ( ps  <->  ch ) )   &    |-  ( y  =  B  ->  A  =  C )   =>    |-  ( ( ph  /\  B  e.  D )  ->  ( C  e.  { x  e.  D  |  ps }  <->  B  e.  { y  e.  D  |  ch }
 ) )
 
Theoremrabxfr 4202* Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ph. (Contributed by NM, 10-Jun-2005.)
 |-  F/_ y B   &    |-  F/_ y C   &    |-  (
 y  e.  D  ->  A  e.  D )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  A  =  C )   =>    |-  ( B  e.  D  ->  ( C  e.  { x  e.  D  |  ph
 } 
 <->  B  e.  { y  e.  D  |  ps }
 ) )
 
Theoremreuhypd 4203* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
 |-  ( ( ph  /\  x  e.  C )  ->  B  e.  C )   &    |-  ( ( ph  /\  x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <->  y  =  B ) )   =>    |-  ( ( ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
 
Theoremreuhyp 4204* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
 |-  ( x  e.  C  ->  B  e.  C )   &    |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <->  y  =  B ) )   =>    |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
 
Theoremuniexb 4205 The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
 |-  ( A  e.  _V  <->  U. A  e.  _V )
 
Theorempwexb 4206 The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
 |-  ( A  e.  _V  <->  ~P A  e.  _V )
 
Theoremuniv 4207 The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
 |- 
 U. _V  =  _V
 
Theoremeldifpw 4208 Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
 |-  C  e.  _V   =>    |-  ( ( A  e.  ~P B  /\  -.  C  C_  B )  ->  ( A  u.  C )  e.  ( ~P ( B  u.  C )  \  ~P B ) )
 
Theoremop1stb 4209 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 |^| |^| <. A ,  B >.  =  A
 
Theoremop1stbg 4210 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| |^| <. A ,  B >.  =  A )
 
Theoremiunpw 4211* An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
 |-  A  e.  _V   =>    |-  ( E. x  e.  A  x  =  U. A 
 <->  ~P U. A  =  U_ x  e.  A  ~P x )
 
2.4.2  Ordinals (continued)
 
Theoremordon 4212 The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
 |- 
 Ord  On
 
Theoremssorduni 4213 The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
 |-  ( A  C_  On  ->  Ord  U. A )
 
Theoremssonuni 4214 The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
 |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
 
Theoremssonunii 4215 The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  C_  On  ->  U. A  e.  On )
 
Theoremonun2 4216 The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B )  e.  On )
 
Theoremonun2i 4217 The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.)
 |-  A  e.  On   &    |-  B  e.  On   =>    |-  ( A  u.  B )  e.  On
 
Theoremordsson 4218 Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
 |-  ( Ord  A  ->  A 
 C_  On )
 
Theoremonss 4219 An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  On  ->  A  C_  On )
 
Theoremonuni 4220 The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
 |-  ( A  e.  On  ->  U. A  e.  On )
 
Theoremorduni 4221 The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.)
 |-  ( Ord  A  ->  Ord  U. A )
 
Theorembm2.5ii 4222* Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
 
Theoremsucexb 4223 A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
 |-  ( A  e.  _V  <->  suc  A  e.  _V )
 
Theoremsucexg 4224 The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  V  ->  suc  A  e.  _V )
 
Theoremsucex 4225 The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   =>    |-  suc  A  e.  _V
 
Theoremordsucim 4226 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
 |-  ( Ord  A  ->  Ord 
 suc  A )
 
Theoremsuceloni 4227 The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
 |-  ( A  e.  On  ->  suc  A  e.  On )
 
Theoremordsucg 4228 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
 |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
 )
 
Theoremsucelon 4229 The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
 |-  ( A  e.  On  <->  suc  A  e.  On )
 
Theoremordsucss 4230 The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
 |-  ( Ord  B  ->  ( A  e.  B  ->  suc 
 A  C_  B )
 )
 
Theoremordelsuc 4231 A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
 |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc 
 A  C_  B )
 )
 
Theoremonsucssi 4232 A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
 |-  A  e.  On   &    |-  B  e.  On   =>    |-  ( A  e.  B  <->  suc 
 A  C_  B )
 
Theoremonsucmin 4233* The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
 |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x }
 )
 
Theoremonsucelsucr 4234 Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4255. However, the converse does hold where  B is a natural number, as seen at nnsucelsuc 6070. (Contributed by Jim Kingdon, 17-Jul-2019.)
 |-  ( B  e.  On  ->  ( suc  A  e.  suc 
 B  ->  A  e.  B ) )
 
Theoremonsucsssucr 4235 The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4252. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
 |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc 
 B  ->  A  C_  B ) )
 
Theoremsucunielr 4236 Successor and union. The converse (where  B is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4256. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  ( suc  A  e.  B  ->  A  e.  U. B )
 
Theoremunon 4237 The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
 |- 
 U. On  =  On
 
Theoremonuniss2 4238* The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  ( A  e.  On  ->  U. { x  e. 
 On  |  x  C_  A }  =  A )
 
Theoremlimon 4239 The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
 |- 
 Lim  On
 
Theoremordunisuc2r 4240* An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
 |-  ( Ord  A  ->  (
 A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
 
Theoremonssi 4241 An ordinal number is a subset of 
On. (Contributed by NM, 11-Aug-1994.)
 |-  A  e.  On   =>    |-  A  C_  On
 
Theoremonsuci 4242 The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
 |-  A  e.  On   =>    |-  suc  A  e.  On
 
Theoremonintonm 4243* The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  C_  On  /\  E. x  x  e.  A )  ->  |^| A  e.  On )
 
Theoremonintrab2im 4244 An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
 
Theoremordtriexmidlem 4245 Lemma for decidability and ordinals. The set  { x  e.  { (/) }  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4247 or weak linearity in ordsoexmid 4286) with a proposition  ph. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
 |- 
 { x  e.  { (/)
 }  |  ph }  e.  On
 
Theoremordtriexmidlem2 4246* Lemma for decidability and ordinals. The set  { x  e.  { (/) }  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4247 or weak linearity in ordsoexmid 4286) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
 |-  ( { x  e. 
 { (/) }  |  ph }  =  (/)  ->  -.  ph )
 
Theoremordtriexmid 4247* Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

(Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )   =>    |-  ( ph  \/  -.  ph )
 
Theoremordtri2orexmid 4248* Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  y  C_  x )   =>    |-  ( ph  \/  -.  ph )
 
Theorem2ordpr 4249 Version of 2on 6009 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
 |- 
 Ord  { (/) ,  { (/) } }
 
Theoremontr2exmid 4250* An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.)
 |- 
 A. x  e.  On  A. y A. z  e. 
 On  ( ( x 
 C_  y  /\  y  e.  z )  ->  x  e.  z )   =>    |-  ( ph  \/  -.  ph )
 
Theoremordtri2or2exmidlem 4251* A set which is  2o if  ph or  (/) if  -.  ph is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.)
 |- 
 { x  e.  { (/)
 ,  { (/) } }  |  ph }  e.  On
 
Theoremonsucsssucexmid 4252* The converse of onsucsssucr 4235 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_ 
 suc  y )   =>    |-  ( ph  \/  -.  ph )
 
Theoremonsucelsucexmidlem1 4253* Lemma for onsucelsucexmid 4255. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  (/)  e.  { x  e. 
 { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
 
Theoremonsucelsucexmidlem 4254* Lemma for onsucelsucexmid 4255. The set  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } appears as  A in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5503), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4245. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |- 
 { x  e.  { (/)
 ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
 
Theoremonsucelsucexmid 4255* The converse of onsucelsucr 4234 implies excluded middle. On the other hand, if  y is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4234 does hold, as seen at nnsucelsuc 6070. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  ->  suc 
 x  e.  suc  y
 )   =>    |-  ( ph  \/  -.  ph )
 
Theoremordsucunielexmid 4256* The converse of sucunielr 4236 (where  B is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  U. y  ->  suc  x  e.  y )   =>    |-  ( ph  \/  -.  ph )
 
2.5  IZF Set Theory - add the Axiom of Set Induction
 
2.5.1  The ZF Axiom of Foundation would imply Excluded Middle
 
Theoremregexmidlemm 4257* Lemma for regexmid 4260. 
A is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  ( x  =  (/)  /\  ph ) ) }   =>    |- 
 E. y  y  e.  A
 
Theoremregexmidlem1 4258* Lemma for regexmid 4260. If  A has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  ( x  =  (/)  /\  ph ) ) }   =>    |-  ( E. y ( y  e.  A  /\  A. z ( z  e.  y  ->  -.  z  e.  A ) )  ->  ( ph  \/  -.  ph ) )
 
Theoremreg2exmidlema 4259* Lemma for reg2exmid 4261. If  A has a minimal element (expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  ( x  =  (/)  /\  ph ) ) }   =>    |-  ( E. u  e.  A  A. v  e.  A  u  C_  v  ->  ( ph  \/  -.  ph ) )
 
Theoremregexmid 4260* The axiom of foundation implies excluded middle.

By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by  e.). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4262. (Contributed by Jim Kingdon, 3-Sep-2019.)

 |-  ( E. y  y  e.  x  ->  E. y
 ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )   =>    |-  ( ph  \/  -.  ph )
 
Theoremreg2exmid 4261* If any inhabited set has a minimal element (when expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
 |- 
 A. z ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y )   =>    |-  ( ph  \/  -.  ph )
 
2.5.2  Introduce the Axiom of Set Induction
 
Axiomax-setind 4262* Axiom of  e.-Induction (also known as set induction). An axiom of Intuitionistic Zermelo-Fraenkel set theory. Axiom 9 of [Crosilla] p. "Axioms of CZF and IZF". This replaces the Axiom of Foundation (also called Regularity) from Zermelo-Fraenkel set theory.

For more on axioms which might be adopted which are incompatible with this axiom (that is, Non-wellfounded Set Theory but in the absence of excluded middle), see Chapter 20 of [AczelRathjen], p. 183. (Contributed by Jim Kingdon, 19-Oct-2018.)

 |-  ( A. a (
 A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
 
Theoremsetindel 4263*  e.-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
 |-  ( A. x (
 A. y ( y  e.  x  ->  y  e.  S )  ->  x  e.  S )  ->  S  =  _V )
 
Theoremsetind 4264* Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
 |-  ( A. x ( x  C_  A  ->  x  e.  A )  ->  A  =  _V )
 
Theoremsetind2 4265 Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
 |-  ( ~P A  C_  A  ->  A  =  _V )
 
Theoremelirr 4266 No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. (Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.)
 |- 
 -.  A  e.  A
 
Theoremordirr 4267 Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. (Contributed by NM, 2-Jan-1994.)
 |-  ( Ord  A  ->  -.  A  e.  A )
 
Theoremnordeq 4268 A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
 |-  ( ( Ord  A  /\  B  e.  A ) 
 ->  A  =/=  B )
 
Theoremordn2lp 4269 An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
 |-  ( Ord  A  ->  -.  ( A  e.  B  /\  B  e.  A ) )
 
Theoremorddisj 4270 An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
 |-  ( Ord  A  ->  ( A  i^i  { A } )  =  (/) )
 
Theoremorddif 4271 Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
 |-  ( Ord  A  ->  A  =  ( suc  A  \  { A } )
 )
 
Theoremelirrv 4272 The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.)
 |- 
 -.  x  e.  x
 
Theoremsucprcreg 4273 A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
 |-  ( -.  A  e.  _V  <->  suc 
 A  =  A )
 
Theoremruv 4274 The Russell class is equal to the universe  _V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
 |- 
 { x  |  x  e/  x }  =  _V
 
TheoremruALT 4275 Alternate proof of Russell's Paradox ru 2763, simplified using (indirectly) the Axiom of Set Induction ax-setind 4262. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 { x  |  x  e/  x }  e/  _V
 
Theoremonprc 4276 No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4212), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
 |- 
 -.  On  e.  _V
 
Theoremsucon 4277 The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
 |- 
 suc  On  =  On
 
Theoremen2lp 4278 No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 27-Nov-2018.)
 |- 
 -.  ( A  e.  B  /\  B  e.  A )
 
Theorempreleq 4279 Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( ( ( A  e.  B  /\  C  e.  D )  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D ) )
 
Theoremopthreg 4280 Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4262 (via the preleq 4279 step). See df-op 3384 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
 
Theoremsuc11g 4281 The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
 
Theoremsuc11 4282 The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
 
Theoremdtruex 4283* At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 3942 can also be summarized as "at least two sets exist", the difference is that dtruarb 3942 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific  y, we can construct a set  x which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.)
 |- 
 E. x  -.  x  =  y
 
Theoremdtru 4284* At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4283. (Contributed by Jim Kingdon, 29-Dec-2018.)
 |- 
 -.  A. x  x  =  y
 
Theoremeunex 4285 Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.)
 |-  ( E! x ph  ->  E. x  -.  ph )
 
Theoremordsoexmid 4286 Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.)
 |- 
 _E  Or  On   =>    |-  ( ph  \/  -.  ph )
 
Theoremordsuc 4287 The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.)
 |-  ( Ord  A  <->  Ord  suc  A )
 
Theoremonsucuni2 4288 A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )
 
Theorem0elsucexmid 4289* If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
 |- 
 A. x  e.  On  (/) 
 e.  suc  x   =>    |-  ( ph  \/  -.  ph )
 
Theoremnlimsucg 4290 A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  e.  V  ->  -.  Lim  suc  A )
 
Theoremordpwsucss 4291 The collection of ordinals in the power class of an ordinal is a superset of its successor.

We can think of  ( ~P A  i^i  On ) as another possible definition of successor, which would be equivalent to df-suc 4108 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if  A  e.  On then both  U. suc  A  =  A (onunisuci 4169) and  U. { x  e.  On  |  x  C_  A }  =  A (onuniss2 4238).

Constructively  ( ~P A  i^i  On ) and  suc  A cannot be shown to be equivalent (as proved at ordpwsucexmid 4294). (Contributed by Jim Kingdon, 21-Jul-2019.)

 |-  ( Ord  A  ->  suc 
 A  C_  ( ~P A  i^i  On ) )
 
Theoremonnmin 4292 No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.)
 |-  ( ( A  C_  On  /\  B  e.  A )  ->  -.  B  e.  |^|
 A )
 
Theoremssnel 4293 Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
 |-  ( A  C_  B  ->  -.  B  e.  A )
 
Theoremordpwsucexmid 4294* The subset in ordpwsucss 4291 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
 |- 
 A. x  e.  On  suc 
 x  =  ( ~P x  i^i  On )   =>    |-  ( ph  \/  -.  ph )
 
Theoremonpsssuc 4295 An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.)
 |-  ( A  e.  On  ->  A  C.  suc  A )
 
Theoremordtri2or2exmid 4296* Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )   =>    |-  ( ph  \/  -.  ph )
 
Theoremonintexmid 4297* If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
 |-  ( ( y  C_  On  /\  E. x  x  e.  y )  ->  |^| y  e.  y
 )   =>    |-  ( ph  \/  -.  ph )
 
Theoremzfregfr 4298 The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
 |- 
 _E  Fr  A
 
Theoremordfr 4299 Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
 |-  ( Ord  A  ->  _E 
 Fr  A )
 
Theoremordwe 4300 Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
 |-  ( Ord  A  ->  _E 
 We  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >