Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv Unicode version

Theorem funcnv 4960
 Description: The converse of a class is a function iff the class is single-rooted, which means that for any in the range of there is at most one such that . Definition of single-rooted in [Enderton] p. 43. See funcnv2 4959 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv
Distinct variable group:   ,,

Proof of Theorem funcnv
StepHypRef Expression
1 vex 2560 . . . . . . 7
2 vex 2560 . . . . . . 7
31, 2brelrn 4567 . . . . . 6
43pm4.71ri 372 . . . . 5
54mobii 1937 . . . 4
6 moanimv 1975 . . . 4
75, 6bitri 173 . . 3
87albii 1359 . 2
9 funcnv2 4959 . 2
10 df-ral 2311 . 2
118, 9, 103bitr4i 201 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241   wcel 1393  wmo 1901  wral 2306   class class class wbr 3764  ccnv 4344   crn 4346   wfun 4896 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904 This theorem is referenced by:  funcnv3  4961  fncnv  4965
 Copyright terms: Public domain W3C validator