HomeHome Intuitionistic Logic Explorer
Theorem List (p. 50 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4901-5000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxwf1o 4901 Extend the definition of a wff to include one-to-one onto functions. (Read:  F maps  A one-to-one onto  B.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27.
 wff  F : A -1-1-onto-> B
 
Syntaxcfv 4902 Extend the definition of a class to include the value of a function. (Read: The value of  F at  A, or " F of  A.")
 class  ( F `  A )
 
Syntaxwiso 4903 Extend the definition of a wff to include the isomorphism property. (Read:  H is an  R,  S isomorphism of  A onto  B.)
 wff  H  Isom  R ,  S  ( A ,  B )
 
Definitiondf-fun 4904 Define predicate that determines if some class  A is a function. Definition 10.1 of [Quine] p. 65. For example, the expression  Fun  _I is true (funi 4932). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 3818 with the maps-to notation (see df-mpt 3820). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 4905), a function with a given domain and codomain (df-f 4906), a one-to-one function (df-f1 4907), an onto function (df-fo 4908), or a one-to-one onto function (df-f1o 4909). For alternate definitions, see dffun2 4912, dffun4 4913, dffun6 4916, dffun7 4928, dffun8 4929, and dffun9 4930. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  )
 )
 
Definitiondf-fn 4905 Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
 
Definitiondf-f 4906 Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  ran  F  C_  B ) )
 
Definitiondf-f1 4907 Define a one-to-one function. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  Fun  `' F ) )
 
Definitiondf-fo 4908 Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -onto-> B 
 <->  ( F  Fn  A  /\  ran  F  =  B ) )
 
Definitiondf-f1o 4909 Define a one-to-one onto function. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
 
Definitiondf-fv 4910* Define the value of a function,  ( F `  A
), also known as function application. For example,  (  _I  `  (/) )  =  (/). Typically, function  F is defined using maps-to notation (see df-mpt 3820), but this is not required. For example, F = {  <. 2 , 6  >.,  <. 3 , 9  >. } -> ( F  ` 3 ) = 9 . We will later define two-argument functions using ordered pairs as  ( A F B )  =  ( F `  <. A ,  B >. ). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful. The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar  F ( A ) notation for a function's value at  A, i.e. " F of  A," but without context-dependent notational ambiguity. (Contributed by NM, 1-Aug-1994.) Revised to use  iota. (Revised by Scott Fenton, 6-Oct-2017.)
 |-  ( F `  A )  =  ( iota x A F x )
 
Definitiondf-isom 4911* Define the isomorphism predicate. We read this as " H is an  R,  S isomorphism of  A onto  B." Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
 
Theoremdffun2 4912* Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z )
 ) )
 
Theoremdffun4 4913* Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremdffun5r 4914* A way of proving a relation is a function, analogous to mo2r 1952. (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) 
 ->  Fun  A )
 
Theoremdffun6f 4915* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
 
Theoremdffun6 4916* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
 |-  ( Fun  F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
 
Theoremfunmo 4917* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  F  ->  E* y  A F y )
 
Theoremdffun4f 4918* Definition of function like dffun4 4913 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremfunrel 4919 A function is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  ->  Rel 
 A )
 
Theoremfunss 4920 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
 |-  ( A  C_  B  ->  ( Fun  B  ->  Fun 
 A ) )
 
Theoremfuneq 4921 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
 |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremfuneqi 4922 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  =  B   =>    |-  ( Fun  A  <->  Fun 
 B )
 
Theoremfuneqd 4923 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremnffun 4924 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   =>    |- 
 F/ x Fun  F
 
Theoremsbcfung 4925 Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
 
Theoremfuneu 4926* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  A F B ) 
 ->  E! y  A F y )
 
Theoremfuneu2 4927* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F )  ->  E! y <. A ,  y >.  e.  F )
 
Theoremdffun7 4928* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 4929 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
 
Theoremdffun8 4929* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 4928. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
 
Theoremdffun9 4930* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
 
Theoremfunfn 4931 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  A  <->  A  Fn  dom  A )
 
Theoremfuni 4932 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
 |- 
 Fun  _I
 
Theoremnfunv 4933 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
 |- 
 -.  Fun  _V
 
Theoremfunopg 4934 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  Fun  <. A ,  B >. )  ->  A  =  B )
 
Theoremfunopab 4935* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
 |-  ( Fun  { <. x ,  y >.  |  ph }  <->  A. x E* y ph )
 
Theoremfunopabeq 4936* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
 |- 
 Fun  { <. x ,  y >.  |  y  =  A }
 
Theoremfunopab4 4937* A class of ordered pairs of values in the form used by df-mpt 3820 is a function. (Contributed by NM, 17-Feb-2013.)
 |- 
 Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
 
Theoremfunmpt 4938 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |- 
 Fun  ( x  e.  A  |->  B )
 
Theoremfunmpt2 4939 Functionality of a class given by a "maps to" notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  Fun 
 F
 
Theoremfunco 4940 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
 
Theoremfunres 4941 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
 |-  ( Fun  F  ->  Fun  ( F  |`  A ) )
 
Theoremfunssres 4942 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
 
Theoremfun2ssres 4943 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
 
Theoremfunun 4944 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( Fun 
 F  /\  Fun  G ) 
 /\  ( dom  F  i^i  dom  G )  =  (/) )  ->  Fun  ( F  u.  G ) )
 
Theoremfuncnvsn 4945 The converse singleton of an ordered pair is a function. This is equivalent to funsn 4948 via cnvsn 4803, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
 |- 
 Fun  `' { <. A ,  B >. }
 
Theoremfunsng 4946 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
 
Theoremfnsng 4947 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
 
Theoremfunsn 4948 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 Fun  { <. A ,  B >. }
 
Theoremfunprg 4949 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntpg 4950 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
 
Theoremfunpr 4951 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntp 4952 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } )
 
Theoremfnsn 4953 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { <. A ,  B >. }  Fn  { A }
 
Theoremfnprg 4954 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B } )
 
Theoremfntpg 4955 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z } )
 
Theoremfntp 4956 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C }
 )
 
Theoremfun0 4957 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
 |- 
 Fun  (/)
 
Theoremfuncnvcnv 4958 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
 |-  ( Fun  A  ->  Fun  `' `' A )
 
Theoremfuncnv2 4959* A simpler equivalence for single-rooted (see funcnv 4960). (Contributed by NM, 9-Aug-2004.)
 |-  ( Fun  `' A  <->  A. y E* x  x A y )
 
Theoremfuncnv 4960* The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 4959 for a simpler version. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
 
Theoremfuncnv3 4961* A condition showing a class is single-rooted. (See funcnv 4960). (Contributed by NM, 26-May-2006.)
 |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
 
Theoremfuncnveq 4962* Another way of expressing that a class is single-rooted. Counterpart to dffun2 4912. (Contributed by Jim Kingdon, 24-Dec-2018.)
 |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
 )
 
Theoremfun2cnv 4963* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that  A is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  `' `' A 
 <-> 
 A. x E* y  x A y )
 
Theoremsvrelfun 4964 A single-valued relation is a function. (See fun2cnv 4963 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
 |-  ( Fun  A  <->  ( Rel  A  /\  Fun  `' `' A ) )
 
Theoremfncnv 4965* Single-rootedness (see funcnv 4960) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
 |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R y )
 
Theoremfun11 4966* Two ways of stating that  A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
 |-  ( ( Fun  `' `' A  /\  Fun  `' A )  <->  A. x A. y A. z A. w ( ( x A y 
 /\  z A w )  ->  ( x  =  z  <->  y  =  w ) ) )
 
Theoremfununi 4967* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f )
 )  ->  Fun  U. A )
 
Theoremfuncnvuni 4968* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 4960 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  Fun  `' U. A )
 
Theoremfun11uni 4969* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  ( Fun  U. A  /\  Fun  `'
 U. A ) )
 
Theoremfunin 4970 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  F  ->  Fun  ( F  i^i  G ) )
 
Theoremfunres11 4971 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
 |-  ( Fun  `' F  ->  Fun  `' ( F  |`  A ) )
 
Theoremfuncnvres 4972 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
 |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A ) ) )
 
Theoremcnvresid 4973 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
 |-  `' (  _I  |`  A )  =  (  _I  |`  A )
 
Theoremfuncnvres2 4974 The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
 |-  ( Fun  F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
 
Theoremfunimacnv 4975 The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
 |-  ( Fun  F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F )
 )
 
Theoremfunimass1 4976 A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
 |-  ( ( Fun  F  /\  A  C_  ran  F ) 
 ->  ( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )
 
Theoremfunimass2 4977 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
 |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) ) 
 ->  ( F " A )  C_  B )
 
Theoremimadiflem 4978 One direction of imadif 4979. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
 |-  ( ( F " A )  \  ( F
 " B ) ) 
 C_  ( F "
 ( A  \  B ) )
 
Theoremimadif 4979 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  `' F  ->  ( F " ( A  \  B ) )  =  ( ( F
 " A )  \  ( F " B ) ) )
 
Theoremimainlem 4980 One direction of imain 4981. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
 |-  ( F " ( A  i^i  B ) ) 
 C_  ( ( F
 " A )  i^i  ( F " B ) )
 
Theoremimain 4981 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
 |-  ( Fun  `' F  ->  ( F " ( A  i^i  B ) )  =  ( ( F
 " A )  i^i  ( F " B ) ) )
 
Theoremfunimaexglem 4982 Lemma for funimaexg 4983. It constitutes the interesting part of funimaexg 4983, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
 |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e.  _V )
 
Theoremfunimaexg 4983 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A " B )  e.  _V )
 
Theoremfunimaex 4984 The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
 |-  B  e.  _V   =>    |-  ( Fun  A  ->  ( A " B )  e.  _V )
 
Theoremisarep1 4985* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by  ph ( x ,  y ) i.e. the class  ( {
<. x ,  y >.  |  ph } " A
). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
 |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
 
Theoremisarep2 4986* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, 
[ i, i  ] => o  ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 4984. (Contributed by NM, 26-Oct-2006.)
 |-  A  e.  _V   &    |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
 [ z  /  y ] ph )  ->  y  =  z )   =>    |- 
 E. w  w  =  ( { <. x ,  y >.  |  ph } " A )
 
Theoremfneq1 4987 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
 
Theoremfneq2 4988 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
 
Theoremfneq1d 4989 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
 
Theoremfneq2d 4990 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )
 
Theoremfneq12d 4991 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
 
Theoremfneq12 4992 Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ( F  =  G  /\  A  =  B )  ->  ( F  Fn  A 
 <->  G  Fn  B ) )
 
Theoremfneq1i 4993 Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  F  =  G   =>    |-  ( F  Fn  A 
 <->  G  Fn  A )
 
Theoremfneq2i 4994 Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
 |-  A  =  B   =>    |-  ( F  Fn  A 
 <->  F  Fn  B )
 
Theoremnffn 4995 Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   &    |-  F/_ x A   =>    |-  F/ x  F  Fn  A
 
Theoremfnfun 4996 A function with domain is a function. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  Fn  A  ->  Fun  F )
 
Theoremfnrel 4997 A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  Fn  A  ->  Rel  F )
 
Theoremfndm 4998 The domain of a function. (Contributed by NM, 2-Aug-1994.)
 |-  ( F  Fn  A  ->  dom  F  =  A )
 
Theoremfunfni 4999 Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
 |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  ph )   =>    |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ph )
 
Theoremfndmu 5000 A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( ( F  Fn  A  /\  F  Fn  B )  ->  A  =  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >