Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rel | Unicode version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 4771 and dfrel3 4778. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | 1 | wrel 4350 | . 2 |
3 | cvv 2557 | . . . 4 | |
4 | 3, 3 | cxp 4343 | . . 3 |
5 | 1, 4 | wss 2917 | . 2 |
6 | 2, 5 | wb 98 | 1 |
Colors of variables: wff set class |
This definition is referenced by: brrelex12 4381 releq 4422 nfrel 4425 sbcrel 4426 relss 4427 ssrel 4428 elrel 4442 relsn 4443 relxp 4447 relun 4454 reliun 4458 reliin 4459 rel0 4462 relopabi 4463 relop 4486 eqbrrdva 4505 elreldm 4560 issref 4707 cnvcnv 4773 relrelss 4844 cnviinm 4859 nfunv 4933 oprabss 5590 1st2nd 5807 1stdm 5808 releldm2 5811 reldmtpos 5868 dmtpos 5871 dftpos4 5878 tpostpos 5879 iinerm 6178 fundmen 6286 frecuzrdgfn 9198 |
Copyright terms: Public domain | W3C validator |