ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss Unicode version

Theorem relrelss 4844
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4352 . . 3  |-  ( Rel 
dom  A  <->  dom  A  C_  ( _V  X.  _V ) )
21anbi2i 430 . 2  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V )
) )
3 relssdmrn 4841 . . . 4  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
4 ssv 2965 . . . . 5  |-  ran  A  C_ 
_V
5 xpss12 4445 . . . . 5  |-  ( ( dom  A  C_  ( _V  X.  _V )  /\  ran  A  C_  _V )  ->  ( dom  A  X.  ran  A )  C_  (
( _V  X.  _V )  X.  _V ) )
64, 5mpan2 401 . . . 4  |-  ( dom 
A  C_  ( _V  X.  _V )  ->  ( dom  A  X.  ran  A
)  C_  ( ( _V  X.  _V )  X. 
_V ) )
73, 6sylan9ss 2958 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  ->  A  C_  ( ( _V  X.  _V )  X.  _V )
)
8 xpss 4446 . . . . . 6  |-  ( ( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
9 sstr 2953 . . . . . 6  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
)  ->  A  C_  ( _V  X.  _V ) )
108, 9mpan2 401 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  A  C_  ( _V  X.  _V ) )
11 df-rel 4352 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1210, 11sylibr 137 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  Rel  A )
13 dmss 4534 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  dom  ( ( _V  X.  _V )  X.  _V )
)
14 vn0m 3232 . . . . . 6  |-  E. x  x  e.  _V
15 dmxpm 4555 . . . . . 6  |-  ( E. x  x  e.  _V  ->  dom  ( ( _V 
X.  _V )  X.  _V )  =  ( _V  X.  _V ) )
1614, 15ax-mp 7 . . . . 5  |-  dom  (
( _V  X.  _V )  X.  _V )  =  ( _V  X.  _V )
1713, 16syl6sseq 2991 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  ( _V  X.  _V ) )
1812, 17jca 290 . . 3  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V ) ) )
197, 18impbii 117 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
202, 19bitri 173 1  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557    C_ wss 2917    X. cxp 4343   dom cdm 4345   ran crn 4346   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  dftpos3  5877  tpostpos2  5880
  Copyright terms: Public domain W3C validator