ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m Unicode version

Theorem vn0m 3232
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m  |-  E. x  x  e.  _V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2560 . 2  |-  x  e. 
_V
2 19.8a 1482 . 2  |-  ( x  e.  _V  ->  E. x  x  e.  _V )
31, 2ax-mp 7 1  |-  E. x  x  e.  _V
Colors of variables: wff set class
Syntax hints:   E.wex 1381    e. wcel 1393   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by:  relrelss  4844
  Copyright terms: Public domain W3C validator