![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssv | Unicode version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2560 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 2943 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-v 2553 df-in 2918 df-ss 2925 |
This theorem is referenced by: ddifss 3169 inv1 3247 unv 3248 vss 3258 pssv 3261 disj2 3269 pwv 3570 trv 3857 xpss 4389 djussxp 4424 dmv 4494 dmresi 4604 resid 4605 ssrnres 4706 rescnvcnv 4726 cocnvcnv1 4774 relrelss 4787 dffn2 4990 oprabss 5532 ofmres 5705 f1stres 5728 f2ndres 5729 |
Copyright terms: Public domain | W3C validator |