ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv Structured version   GIF version

Theorem ssv 2959
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv A ⊆ V

Proof of Theorem ssv
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 elex 2560 . 2 (x Ax V)
21ssriv 2943 1 A ⊆ V
Colors of variables: wff set class
Syntax hints:  Vcvv 2551  wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553  df-in 2918  df-ss 2925
This theorem is referenced by:  ddifss  3169  inv1  3247  unv  3248  vss  3258  pssv  3261  disj2  3269  pwv  3570  trv  3857  xpss  4389  djussxp  4424  dmv  4494  dmresi  4604  resid  4605  ssrnres  4706  rescnvcnv  4726  cocnvcnv1  4774  relrelss  4787  dffn2  4990  oprabss  5532  ofmres  5705  f1stres  5728  f2ndres  5729
  Copyright terms: Public domain W3C validator