ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwv Unicode version

Theorem pwv 3579
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv  |-  ~P _V  =  _V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 2965 . . . 4  |-  x  C_  _V
2 vex 2560 . . . . 5  |-  x  e. 
_V
32elpw 3365 . . . 4  |-  ( x  e.  ~P _V  <->  x  C_  _V )
41, 3mpbir 134 . . 3  |-  x  e. 
~P _V
54, 22th 163 . 2  |-  ( x  e.  ~P _V  <->  x  e.  _V )
65eqriv 2037 1  |-  ~P _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1243    e. wcel 1393   _Vcvv 2557    C_ wss 2917   ~Pcpw 3359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361
This theorem is referenced by:  univ  4207
  Copyright terms: Public domain W3C validator