Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpw | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
elpw.1 |
Ref | Expression |
---|---|
elpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 | |
2 | sseq1 2966 | . 2 | |
3 | df-pw 3361 | . 2 | |
4 | 1, 2, 3 | elab2 2690 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wcel 1393 cvv 2557 wss 2917 cpw 3359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 |
This theorem is referenced by: selpw 3366 elpwg 3367 prsspw 3536 pwprss 3576 pwtpss 3577 pwv 3579 sspwuni 3739 iinpw 3742 iunpwss 3743 0elpw 3917 pwuni 3943 snelpw 3949 sspwb 3952 ssextss 3956 pwin 4019 pwunss 4020 iunpw 4211 xpsspw 4450 ioof 8840 |
Copyright terms: Public domain | W3C validator |