![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir | Unicode version |
Description: An inference from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbir.min |
![]() ![]() |
mpbir.maj |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir.min |
. 2
![]() ![]() | |
2 | mpbir.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpri 124 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 7 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: pm5.74ri 170 imnani 625 stabnot 741 mpbir2an 849 mpbir3an 1086 tru 1247 mpgbir 1342 nfxfr 1363 19.8a 1482 sbt 1667 dveeq2 1696 dveeq2or 1697 sbequilem 1719 cbvex2 1797 dvelimALT 1886 dvelimfv 1887 dvelimor 1894 nfeuv 1918 moaneu 1976 moanmo 1977 eqeltri 2110 nfcxfr 2175 neir 2209 neirr 2215 eqnetri 2228 nesymir 2252 nelir 2300 mprgbir 2379 vex 2560 issetri 2564 moeq 2716 cdeqi 2749 ru 2763 eqsstri 2975 3sstr4i 2984 rgenm 3323 mosn 3406 rabrsndc 3438 tpid1 3481 tpid2 3482 tpid3 3484 pwv 3579 uni0 3607 eqbrtri 3783 tr0 3865 trv 3866 zfnuleu 3881 0ex 3884 inex1 3891 0elpw 3917 axpow2 3929 axpow3 3930 pwex 3932 zfpair2 3945 exss 3963 moop2 3988 pwundifss 4022 po0 4048 epse 4079 fr0 4088 0elon 4129 onm 4138 uniex2 4173 snnex 4181 ordtriexmidlem 4245 ordtriexmid 4247 ontr2exmid 4250 ordtri2or2exmidlem 4251 onsucsssucexmid 4252 onsucelsucexmidlem 4254 ruALT 4275 zfregfr 4298 zfinf2 4312 omex 4316 finds 4323 finds2 4324 ordom 4329 relsnop 4444 relxp 4447 rel0 4462 relopabi 4463 eliunxp 4475 opeliunxp2 4476 dmi 4550 xpidtr 4715 cnvcnv 4773 dmsn0 4788 cnvsn0 4789 funmpt 4938 funmpt2 4939 isarep2 4986 f0 5080 f10 5160 f1o00 5161 f1oi 5164 f1osn 5166 brprcneu 5171 fvopab3ig 5246 opabex 5385 eufnfv 5389 mpt2fun 5603 reldmmpt2 5612 ovid 5617 ovidig 5618 ovidi 5619 ovig 5622 ovi3 5637 oprabex 5755 oprabex3 5756 f1stres 5786 f2ndres 5787 tpos0 5889 issmo 5903 tfrlem6 5932 tfrlem8 5934 rdgfun 5960 0lt1o 6023 eqer 6138 ecopover 6204 ecopoverg 6207 th3qcor 6210 ssdomg 6258 ensn1 6276 xpcomf1o 6299 fiunsnnn 6338 dmaddpi 6423 dmmulpi 6424 1lt2pi 6438 indpi 6440 1lt2nq 6504 genpelxp 6609 ltexprlempr 6706 recexprlempr 6730 cauappcvgprlemcl 6751 cauappcvgprlemladd 6756 caucvgprlemcl 6774 caucvgprprlemcl 6802 m1p1sr 6845 m1m1sr 6846 0lt1sr 6850 peano1nnnn 6928 ax1cn 6937 ax1re 6938 ax0lt1 6950 ax-0lt1 6990 0lt1 7141 subaddrii 7300 ixi 7574 1ap0 7581 nn1suc 7933 neg1lt0 8025 4d2e2 8076 iap0 8148 un0mulcl 8216 nummac 8399 uzf 8476 mnfltpnf 8706 ixxf 8767 ioof 8840 fzf 8878 fzp1disj 8942 fzp1nel 8966 fzo0 9024 frecfzennn 9203 frechashgf1o 9205 sq0 9344 irec 9352 climmo 9819 ex-fl 9895 bj-axempty 10013 bj-axempty2 10014 bdinex1 10019 bj-zfpair2 10030 bj-uniex2 10036 bj-indint 10055 bj-omind 10058 bj-omex 10067 bj-omelon 10086 |
Copyright terms: Public domain | W3C validator |