Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfnuleu | Unicode version |
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2025 to strengthen the hypothesis in the form of axnul 3882). (Contributed by NM, 22-Dec-2007.) |
Ref | Expression |
---|---|
zfnuleu.1 |
Ref | Expression |
---|---|
zfnuleu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfnuleu.1 | . . . 4 | |
2 | nbfal 1254 | . . . . . 6 | |
3 | 2 | albii 1359 | . . . . 5 |
4 | 3 | exbii 1496 | . . . 4 |
5 | 1, 4 | mpbi 133 | . . 3 |
6 | nfv 1421 | . . . 4 | |
7 | 6 | bm1.1 2025 | . . 3 |
8 | 5, 7 | ax-mp 7 | . 2 |
9 | 3 | eubii 1909 | . 2 |
10 | 8, 9 | mpbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 98 wal 1241 wfal 1248 wex 1381 weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |