ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfnuleu Unicode version

Theorem zfnuleu 3881
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2025 to strengthen the hypothesis in the form of axnul 3882). (Contributed by NM, 22-Dec-2007.)
Hypothesis
Ref Expression
zfnuleu.1  |-  E. x A. y  -.  y  e.  x
Assertion
Ref Expression
zfnuleu  |-  E! x A. y  -.  y  e.  x
Distinct variable group:    x, y

Proof of Theorem zfnuleu
StepHypRef Expression
1 zfnuleu.1 . . . 4  |-  E. x A. y  -.  y  e.  x
2 nbfal 1254 . . . . . 6  |-  ( -.  y  e.  x  <->  ( y  e.  x  <-> F.  ) )
32albii 1359 . . . . 5  |-  ( A. y  -.  y  e.  x  <->  A. y ( y  e.  x  <-> F.  ) )
43exbii 1496 . . . 4  |-  ( E. x A. y  -.  y  e.  x  <->  E. x A. y ( y  e.  x  <-> F.  ) )
51, 4mpbi 133 . . 3  |-  E. x A. y ( y  e.  x  <-> F.  )
6 nfv 1421 . . . 4  |-  F/ x F.
76bm1.1 2025 . . 3  |-  ( E. x A. y ( y  e.  x  <-> F.  )  ->  E! x A. y
( y  e.  x  <-> F.  ) )
85, 7ax-mp 7 . 2  |-  E! x A. y ( y  e.  x  <-> F.  )
93eubii 1909 . 2  |-  ( E! x A. y  -.  y  e.  x  <->  E! x A. y ( y  e.  x  <-> F.  ) )
108, 9mpbir 134 1  |-  E! x A. y  -.  y  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 98   A.wal 1241   F. wfal 1248   E.wex 1381   E!weu 1900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator