![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbii | Unicode version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1495 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1340 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 2exbii 1497 3exbii 1498 exancom 1499 excom13 1579 exrot4 1581 eeor 1585 sbcof2 1691 sbequ8 1727 sbidm 1731 sborv 1770 19.41vv 1783 19.41vvv 1784 19.41vvvv 1785 exdistr 1787 19.42vvv 1789 exdistr2 1791 3exdistr 1792 4exdistr 1793 eean 1806 eeeanv 1808 ee4anv 1809 2sb5 1859 2sb5rf 1865 sbel2x 1874 sbexyz 1879 sbex 1880 exsb 1884 2exsb 1885 sb8eu 1913 sb8euh 1923 eu1 1925 eu2 1944 2moswapdc 1990 2exeu 1992 exists1 1996 clelab 2162 clabel 2163 sbabel 2203 rexbii2 2335 r2exf 2342 nfrexdya 2359 r19.41 2465 r19.43 2468 isset 2561 rexv 2572 ceqsex2 2594 ceqsex3v 2596 gencbvex 2600 ceqsrexv 2674 rexab 2703 rexrab2 2708 euxfrdc 2727 euind 2728 reu6 2730 reu3 2731 2reuswapdc 2743 reuind 2744 sbccomlem 2832 rmo2ilem 2847 rexun 3123 reupick3 3222 abn0r 3243 rabn0m 3245 rexsns 3409 rexsnsOLD 3410 exsnrex 3413 snprc 3435 euabsn2 3439 reusn 3441 eusn 3444 elunirab 3593 unipr 3594 uniun 3599 uniin 3600 iuncom4 3664 dfiun2g 3689 iunn0m 3717 iunxiun 3736 cbvopab2 3831 cbvopab2v 3834 unopab 3836 zfnuleu 3881 0ex 3884 vprc 3888 inex1 3891 intexabim 3906 iinexgm 3908 inuni 3909 unidif0 3920 axpweq 3924 zfpow 3928 axpow2 3929 axpow3 3930 pwex 3932 zfpair2 3945 mss 3962 exss 3963 opm 3971 eqvinop 3980 copsexg 3981 opabm 4017 iunopab 4018 zfun 4171 uniex2 4173 uniuni 4183 rexxfrd 4195 dtruex 4283 zfinf2 4312 elxp2 4363 opeliunxp 4395 xpiundi 4398 xpiundir 4399 elvvv 4403 eliunxp 4475 rexiunxp 4478 relop 4486 opelco2g 4503 cnvco 4520 cnvuni 4521 dfdm3 4522 dfrn2 4523 dfrn3 4524 elrng 4526 dfdm4 4527 eldm2g 4531 dmun 4542 dmin 4543 dmiun 4544 dmuni 4545 dmopab 4546 dmi 4550 dmmrnm 4554 elrn 4577 rnopab 4581 dmcosseq 4603 dmres 4632 elres 4646 elsnres 4647 dfima2 4670 elima3 4675 imadmrn 4678 imai 4681 args 4694 rniun 4734 ssrnres 4763 dmsnm 4786 dmsnopg 4792 elxp4 4808 elxp5 4809 cnvresima 4810 mptpreima 4814 dfco2 4820 coundi 4822 coundir 4823 resco 4825 imaco 4826 rnco 4827 coiun 4830 coi1 4836 coass 4839 xpcom 4864 dffun2 4912 imadif 4979 imainlem 4980 funimaexglem 4982 fun11iun 5147 f11o 5159 brprcneu 5171 nfvres 5206 fndmin 5274 abrexco 5398 imaiun 5399 dfoprab2 5552 cbvoprab2 5577 rexrnmpt2 5616 opabex3d 5748 opabex3 5749 abexssex 5752 abexex 5753 oprabrexex2 5757 releldm2 5811 dfopab2 5815 dfoprab3s 5816 brtpos2 5866 domen 6232 xpsnen 6295 xpcomco 6300 xpassen 6304 subhalfnqq 6512 ltbtwnnq 6514 prnmaxl 6586 prnminu 6587 prarloc 6601 genpdflem 6605 genpassl 6622 genpassu 6623 ltexprlemm 6698 2rexuz 8525 bj-axempty 10013 bj-axempty2 10014 bj-vprc 10016 bdinex1 10019 bj-zfpair2 10030 bj-uniex2 10036 bj-d0clsepcl 10049 |
Copyright terms: Public domain | W3C validator |