HomeHome Intuitionistic Logic Explorer
Theorem List (p. 39 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3801-3900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsyl6eqbr 3801 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theoremsyl6eqbrr 3802 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  B  =  A )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theoremsyl6breq 3803 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  B  =  C   =>    |-  ( ph  ->  A R C )
 
Theoremsyl6breqr 3804 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  ( ph  ->  A R B )   &    |-  C  =  B   =>    |-  ( ph  ->  A R C )
 
Theoremssbrd 3805 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C A D  ->  C B D ) )
 
Theoremssbri 3806 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
 |-  A  C_  B   =>    |-  ( C A D  ->  C B D )
 
Theoremnfbrd 3807 Deduction version of bound-variable hypothesis builder nfbr 3808. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x R )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A R B )
 
Theoremnfbr 3808 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x R   &    |-  F/_ x B   =>    |- 
 F/ x  A R B
 
Theorembrab1 3809* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
 |-  ( x R A  <->  x  e.  { z  |  z R A }
 )
 
Theorembrun 3810 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
 |-  ( A ( R  u.  S ) B  <-> 
 ( A R B  \/  A S B ) )
 
Theorembrin 3811 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
 |-  ( A ( R  i^i  S ) B  <-> 
 ( A R B  /\  A S B ) )
 
Theorembrdif 3812 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
 |-  ( A ( R 
 \  S ) B  <-> 
 ( A R B  /\  -.  A S B ) )
 
Theoremsbcbrg 3813 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C ) )
 
Theoremsbcbr12g 3814* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R [_ A  /  x ]_ C ) )
 
Theoremsbcbr1g 3815* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R C ) )
 
Theoremsbcbr2g 3816* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
 
2.1.23  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 3817 Extend class notation to include ordered-pair class abstraction (class builder).
 class  { <. x ,  y >.  |  ph }
 
Syntaxcmpt 3818 Extend the definition of a class to include maps-to notation for defining a function via a rule.
 class  ( x  e.  A  |->  B )
 
Definitiondf-opab 3819* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually  x and  y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y ( z  = 
 <. x ,  y >.  /\  ph ) }
 
Definitiondf-mpt 3820* Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from  x (in 
A) to  B ( x )." The class expression  B is the value of the function at  x and normally contains the variable  x. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
 
Theoremopabss 3821* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { <. x ,  y >.  |  x R y }  C_  R
 
Theoremopabbid 3822 Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbidv 3823* Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbii 3824 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }
 
Theoremnfopab 3825* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) (Unnecessary distinct variable restrictions were removed by Andrew Salmon, 11-Jul-2011.)
 |- 
 F/ z ph   =>    |-  F/_ z { <. x ,  y >.  |  ph }
 
Theoremnfopab1 3826 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x { <. x ,  y >.  |  ph }
 
Theoremnfopab2 3827 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y { <. x ,  y >.  |  ph }
 
Theoremcbvopab 3828* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopabv 3829* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopab1 3830* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |- 
 F/ z ph   &    |-  F/ x ps   &    |-  ( x  =  z  ->  (
 ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2 3831* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ z ph   &    |-  F/ y ps   &    |-  ( y  =  z  ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcbvopab1s 3832* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [ z  /  x ] ph }
 
Theoremcbvopab1v 3833* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
 |-  ( x  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2v 3834* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcsbopabg 3835* Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph } )
 
Theoremunopab 3836 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  u.  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  \/  ps ) }
 
Theoremmpteq12f 3837 An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dva 3838* An equality inference for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dv 3839* An equality inference for the maps to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12 3840* An equality theorem for the maps to notation. (Contributed by NM, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq1 3841* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( A  =  B  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq1d 3842* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq2ia 3843 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq2i 3844 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  B  =  C   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq12i 3845 An equality inference for the maps to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  A  =  C   &    |-  B  =  D   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )
 
Theoremmpteq2da 3846 Slightly more general equality inference for the maps to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dva 3847* Slightly more general equality inference for the maps to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dv 3848* An equality inference for the maps to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremnfmpt 3849* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( y  e.  A  |->  B )
 
Theoremnfmpt1 3850 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
 |-  F/_ x ( x  e.  A  |->  B )
 
Theoremcbvmpt 3851* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
 
Theoremcbvmptv 3852* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremmptv 3853* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
 
2.1.24  Transitive classes
 
Syntaxwtr 3854 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
 wff  Tr  A
 
Definitiondf-tr 3855 Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 3856 (which is suggestive of the word "transitive"), dftr3 3858, dftr4 3859, and dftr5 3857. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  U. A  C_  A )
 
Theoremdftr2 3856* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
 |-  ( Tr  A  <->  A. x A. y
 ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
 
Theoremdftr5 3857* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
 |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
 
Theoremdftr3 3858* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
 
Theoremdftr4 3859 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A  C_  ~P A )
 
Theoremtreq 3860 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
 |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B ) )
 
Theoremtrel 3861 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A ) 
 ->  B  e.  A ) )
 
Theoremtrel3 3862 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
 
Theoremtrss 3863 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
 |-  ( Tr  A  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theoremtrin 3864 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
 |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
 
Theoremtr0 3865 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
 |- 
 Tr  (/)
 
Theoremtrv 3866 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
 |- 
 Tr  _V
 
Theoremtriun 3867* The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
 
Theoremtruni 3868* The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
 
Theoremtrint 3869* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
 
Theoremtrintssm 3870* If  A is transitive and inhabited, then  |^| A is a subset of  A. (Contributed by Jim Kingdon, 22-Aug-2018.)
 |-  ( ( E. x  x  e.  A  /\  Tr  A )  ->  |^| A  C_  A )
 
Theoremtrint0m 3871* Any inhabited transitive class includes its intersection. Similar to Exercise 2 in [TakeutiZaring] p. 44. (Contributed by Jim Kingdon, 22-Aug-2018.)
 |-  ( ( Tr  A  /\  E. x  x  e.  A )  ->  |^| A  C_  A )
 
2.2  IZF Set Theory - add the Axioms of Collection and Separation
 
2.2.1  Introduce the Axiom of Collection
 
Axiomax-coll 3872* Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 3925 but uses a freeness hypothesis in place of one of the distinct variable constraints. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremrepizf 3873* Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 3872. It is identical to zfrep6 3874 except for the choice of a freeness hypothesis rather than a distinct variable constraint between  b and  ph. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E! y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremzfrep6 3874* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 3875 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
2.2.2  Introduce the Axiom of Separation
 
Axiomax-sep 3875* The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed, and with a  F/ y ph condition replaced by a distinct variable constraint between  y and  ph).

The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with  x  e.  z) so that it asserts the existence of a collection only if it is smaller than some other collection  z that already exists. This prevents Russell's paradox ru 2763. In some texts, this scheme is called "Aussonderung" or the Subset Axiom.

(Contributed by NM, 11-Sep-2006.)

 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
 
Theoremaxsep2 3876* A less restrictive version of the Separation Scheme ax-sep 3875, where variables  x and  z can both appear free in the wff  ph, which can therefore be thought of as  ph ( x ,  z ). This version was derived from the more restrictive ax-sep 3875 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
 
Theoremzfauscl 3877* Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 3875, we invoke the Axiom of Extensionality (indirectly via vtocl 2608), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
 )
 
Theorembm1.3ii 3878* Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 3875. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.)
 |- 
 E. x A. y
 ( ph  ->  y  e.  x )   =>    |- 
 E. x A. y
 ( y  e.  x  <->  ph )
 
Theorema9evsep 3879* Derive a weakened version of ax-i9 1423, where  x and  y must be distinct, from Separation ax-sep 3875 and Extensionality ax-ext 2022. The theorem  -.  A. x -.  x  =  y also holds (ax9vsep 3880), but in intuitionistic logic  E. x x  =  y is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 E. x  x  =  y
 
Theoremax9vsep 3880* Derive a weakened version of ax-9 1424, where  x and  y must be distinct, from Separation ax-sep 3875 and Extensionality ax-ext 2022. In intuitionistic logic a9evsep 3879 is stronger and also holds. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 -.  A. x  -.  x  =  y
 
2.2.3  Derive the Null Set Axiom
 
Theoremzfnuleu 3881* Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2025 to strengthen the hypothesis in the form of axnul 3882). (Contributed by NM, 22-Dec-2007.)
 |- 
 E. x A. y  -.  y  e.  x   =>    |-  E! x A. y  -.  y  e.  x
 
Theoremaxnul 3882* The Null Set Axiom of ZF set theory: there exists a set with no elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks, this is presented as a separate axiom; here we show it can be derived from Separation ax-sep 3875. This version of the Null Set Axiom tells us that at least one empty set exists, but does not tell us that it is unique - we need the Axiom of Extensionality to do that (see zfnuleu 3881).

This theorem should not be referenced by any proof. Instead, use ax-nul 3883 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)

 |- 
 E. x A. y  -.  y  e.  x
 
Axiomax-nul 3883* The Null Set Axiom of IZF set theory. It was derived as axnul 3882 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. Axiom 4 of [Crosilla] p. "Axioms of CZF and IZF". (Contributed by NM, 7-Aug-2003.)
 |- 
 E. x A. y  -.  y  e.  x
 
Theorem0ex 3884 The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 3883. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  (/)  e.  _V
 
Theoremcsbexga 3885 The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
 |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  [_ A  /  x ]_ B  e.  _V )
 
Theoremcsbexa 3886 The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  [_ A  /  x ]_ B  e.  _V
 
2.2.4  Theorems requiring subset and intersection existence
 
Theoremnalset 3887* No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.)
 |- 
 -.  E. x A. y  y  e.  x
 
Theoremvprc 3888 The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
 |- 
 -.  _V  e.  _V
 
Theoremnvel 3889 The universal class doesn't belong to any class. (Contributed by FL, 31-Dec-2006.)
 |- 
 -.  _V  e.  A
 
Theoremvnex 3890 The universal class does not exist. (Contributed by NM, 4-Jul-2005.)
 |- 
 -.  E. x  x  =  _V
 
Theoreminex1 3891 Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  i^i  B )  e.  _V
 
Theoreminex2 3892 Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
 |-  A  e.  _V   =>    |-  ( B  i^i  A )  e.  _V
 
Theoreminex1g 3893 Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
 |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theoremssex 3894 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 3875 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
 |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theoremssexi 3895 The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
 |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theoremssexg 3896 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.)
 |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theoremssexd 3897 A subclass of a set is a set. Deduction form of ssexg 3896. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A 
 C_  B )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremdifexg 3898 Existence of a difference. (Contributed by NM, 26-May-1998.)
 |-  ( A  e.  V  ->  ( A  \  B )  e.  _V )
 
Theoremzfausab 3899* Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
 |-  A  e.  _V   =>    |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremrabexg 3900* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
 |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >