![]() |
Intuitionistic Logic Explorer Theorem List (p. 80 of 102) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | divgt0d 7901 | The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulgt1d 7902 | The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lemulge11d 7903 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lemulge12d 7904 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lemul1ad 7905 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lemul2ad 7906 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ltmul12ad 7907 | Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lemul12ad 7908 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lemul12bd 7909 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | crap0 7910 | The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | creur 7911* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | creui 7912* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cju 7913* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | cn 7914 | Extend class notation to include the class of positive integers. |
![]() ![]() | ||
Definition | df-inn 7915* | Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 7916 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dfnn2 7916* | Definition of the set of positive integers. Another name for df-inn 7915. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | peano5nni 7917* | Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnssre 7918 | The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
![]() ![]() ![]() ![]() | ||
Theorem | nnsscn 7919 | The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | nnex 7920 | The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() | ||
Theorem | nnre 7921 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nncn 7922 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnrei 7923 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nncni 7924 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1nn 7925 | Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
![]() ![]() ![]() ![]() | ||
Theorem | peano2nn 7926 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnred 7927 | A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nncnd 7928 | A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | peano2nnd 7929 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnind 7930* | Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 7934 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnindALT 7931* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 7930 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn1m1nn 7932 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn1suc 7933* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnaddcl 7934 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnmulcl 7935 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnmulcli 7936 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnge1 7937 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnle1eq1 7938 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nngt0 7939 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnnlt1 7940 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0nnn 7941 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnne0 7942 | A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnap0 7943 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nngt0i 7944 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnne0i 7945 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn2ge 7946* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nn1gt1 7947 |
A positive integer is either one or greater than one. This is for
![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nngt1ne1 7948 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nndivre 7949 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnrecre 7950 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnrecgt0 7951 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnsub 7952 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnsubi 7953 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nndiv 7954* |
Two ways to express "![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nndivtr 7955 |
Transitive property of divisibility: if ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnge1d 7956 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nngt0d 7957 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnne0d 7958 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnap0d 7959 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnrecred 7960 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnaddcld 7961 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nnmulcld 7962 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nndivred 7963 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 6896 and df-1 6897). Only the digits 0 through 9 (df-0 6896 through df-9 7980) and the number 10 (df-10 7981) are explicitly defined. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
Syntax | c2 7964 | Extend class notation to include the number 2. |
![]() ![]() | ||
Syntax | c3 7965 | Extend class notation to include the number 3. |
![]() ![]() | ||
Syntax | c4 7966 | Extend class notation to include the number 4. |
![]() ![]() | ||
Syntax | c5 7967 | Extend class notation to include the number 5. |
![]() ![]() | ||
Syntax | c6 7968 | Extend class notation to include the number 6. |
![]() ![]() | ||
Syntax | c7 7969 | Extend class notation to include the number 7. |
![]() ![]() | ||
Syntax | c8 7970 | Extend class notation to include the number 8. |
![]() ![]() | ||
Syntax | c9 7971 | Extend class notation to include the number 9. |
![]() ![]() | ||
Syntax | c10 7972 | Extend class notation to include the number 10. |
![]() ![]() | ||
Definition | df-2 7973 | Define the number 2. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-3 7974 | Define the number 3. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-4 7975 | Define the number 4. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-5 7976 | Define the number 5. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-6 7977 | Define the number 6. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-7 7978 | Define the number 7. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-8 7979 | Define the number 8. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-9 7980 | Define the number 9. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-10 7981 | Define the number 10. See remarks under df-2 7973. (Contributed by NM, 5-Feb-2007.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0ne1 7982 |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() | ||
Theorem | 1ne0 7983 |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() | ||
Theorem | 1m1e0 7984 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2re 7985 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() | ||
Theorem | 2cn 7986 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
![]() ![]() ![]() ![]() | ||
Theorem | 2ex 7987 | 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | 2cnd 7988 | 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 3re 7989 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() | ||
Theorem | 3cn 7990 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
![]() ![]() ![]() ![]() | ||
Theorem | 3ex 7991 | 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | 4re 7992 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() | ||
Theorem | 4cn 7993 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
![]() ![]() ![]() ![]() | ||
Theorem | 5re 7994 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() | ||
Theorem | 5cn 7995 | The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | 6re 7996 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() | ||
Theorem | 6cn 7997 | The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | 7re 7998 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() | ||
Theorem | 7cn 7999 | The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() | ||
Theorem | 8re 8000 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |