HomeHome Intuitionistic Logic Explorer
Theorem List (p. 77 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7601-7700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddext 7601 Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5521. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )
 
Theoremapneg 7602 Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  -u A #  -u B ) )
 
Theoremmulext1 7603 Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
 
Theoremmulext2 7604 Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( C  x.  A ) #  ( C  x.  B )  ->  A #  B ) )
 
Theoremmulext 7605 Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5521. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  x.  B ) #  ( C  x.  D )  ->  ( A #  C  \/  B #  D ) ) )
 
Theoremmulap0r 7606 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0
 ) )
 
Theoremmsqge0 7607 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  RR  ->  0  <_  ( A  x.  A ) )
 
Theoremmsqge0i 7608 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  RR   =>    |-  0  <_  ( A  x.  A )
 
Theoremmsqge0d 7609 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  0  <_  ( A  x.  A ) )
 
Theoremmulge0 7610 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  -> 
 0  <_  ( A  x.  B ) )
 
Theoremmulge0i 7611 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  0  <_  ( A  x.  B ) )
 
Theoremmulge0d 7612 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  ( A  x.  B ) )
 
Theoremapti 7613 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B 
 <->  -.  A #  B ) )
 
Theoremapne 7614 Apartness implies negated equality. We cannot in general prove the converse, which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  ->  A  =/=  B ) )
 
Theoremleltap 7615 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( A  <  B  <->  B #  A ) )
 
Theoremgt0ap0 7616 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
 
Theoremgt0ap0i 7617 Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  RR   =>    |-  ( 0  <  A  ->  A #  0 )
 
Theoremgt0ap0ii 7618 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  A #  0
 
Theoremgt0ap0d 7619 Positive implies apart from zero. Because of the way we define #,  A must be an element of  RR, not just  RR*. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A #  0 )
 
Theoremnegap0 7620 A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  -u A #  0 ) )
 
Theoremltleap 7621 Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  A #  B ) ) )
 
Theoremltap 7622 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) 
 ->  B #  A )
 
Theoremgtapii 7623 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  A  <  B   =>    |-  B #  A
 
Theoremltapii 7624 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  A  <  B   =>    |-  A #  B
 
Theoremltapi 7625 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  <  B  ->  B #  A )
 
Theoremgtapd 7626 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  B #  A )
 
Theoremltapd 7627 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A #  B )
 
Theoremleltapd 7628 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  <  B  <->  B #  A )
 )
 
Theoremap0gt0 7629 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A #  0  <->  0  <  A ) )
 
Theoremap0gt0d 7630 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  0  <  A )
 
Theoremsubap0d 7631 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   =>    |-  ( ph  ->  ( A  -  B ) #  0 )
 
3.3.7  Reciprocals
 
Theoremrecextlem1 7632 Lemma for recexap 7634. (Contributed by Eric Schmidt, 23-May-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B ) ) )
 
Theoremrecexaplem2 7633 Lemma for recexap 7634. (Contributed by Jim Kingdon, 20-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  (
 ( A  x.  A )  +  ( B  x.  B ) ) #  0 )
 
Theoremrecexap 7634* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  E. x  e.  CC  ( A  x.  x )  =  1 )
 
Theoremmulap0 7635 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
 
Theoremmulap0b 7636 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0
 ) 
 <->  ( A  x.  B ) #  0 ) )
 
Theoremmulap0i 7637 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  A #  0   &    |-  B #  0   =>    |-  ( A  x.  B ) #  0
 
Theoremmulap0bd 7638 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <->  ( A  x.  B ) #  0 )
 )
 
Theoremmulap0d 7639 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  x.  B ) #  0 )
 
Theoremmulap0bad 7640 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 7639 and consequence of mulap0bd 7638. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  x.  B ) #  0 )   =>    |-  ( ph  ->  A #  0 )
 
Theoremmulap0bbd 7641 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 7639 and consequence of mulap0bd 7638. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  x.  B ) #  0 )   =>    |-  ( ph  ->  B #  0 )
 
Theoremmulcanapd 7642 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B ) )
 
Theoremmulcanap2d 7643 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  x.  C )  =  ( B  x.  C )  <->  A  =  B ) )
 
Theoremmulcanapad 7644 Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 7642. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( C  x.  A )  =  ( C  x.  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremmulcanap2ad 7645 Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 7643. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( A  x.  C )  =  ( B  x.  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremmulcanap 7646 Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B ) )
 
Theoremmulcanap2 7647 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  C )  =  ( B  x.  C )  <->  A  =  B ) )
 
Theoremmulcanapi 7648 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B )
 
Theoremmuleqadd 7649 Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B ) 
 <->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1 ) )
 
Theoremreceuap 7650* Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
 
3.3.8  Division
 
Syntaxcdiv 7651 Extend class notation to include division.
 class  /
 
Definitiondf-div 7652* Define division. Theorem divmulap 7654 relates it to multiplication, and divclap 7657 and redivclap 7707 prove its closure laws. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
 |- 
 /  =  ( x  e.  CC ,  y  e.  ( CC  \  {
 0 } )  |->  (
 iota_ z  e.  CC  ( y  x.  z
 )  =  x ) )
 
Theoremdivvalap 7653* Value of division: the (unique) element  x such that  ( B  x.  x )  =  A. This is meaningful only when  B is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e. 
 CC  ( B  x.  x )  =  A ) )
 
Theoremdivmulap 7654 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  ( C  x.  B )  =  A ) )
 
Theoremdivmulap2 7655 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  A  =  ( C  x.  B ) ) )
 
Theoremdivmulap3 7656 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  A  =  ( B  x.  C ) ) )
 
Theoremdivclap 7657 Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
 
Theoremrecclap 7658 Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  A )  e.  CC )
 
Theoremdivcanap2 7659 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  /  B ) )  =  A )
 
Theoremdivcanap1 7660 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  x.  B )  =  A )
 
Theoremdiveqap0 7661 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  =  0  <->  A  =  0 ) )
 
Theoremdivap0b 7662 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A #  0  <->  ( A  /  B ) #  0 )
 )
 
Theoremdivap0 7663 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  /  B ) #  0 )
 
Theoremrecap0 7664 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  A ) #  0 )
 
Theoremrecidap 7665 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A  x.  (
 1  /  A )
 )  =  1 )
 
Theoremrecidap2 7666 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( ( 1  /  A )  x.  A )  =  1 )
 
Theoremdivrecap 7667 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  ( 1  /  B ) ) )
 
Theoremdivrecap2 7668 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( ( 1 
 /  B )  x.  A ) )
 
Theoremdivassap 7669 An associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  B )  /  C )  =  ( A  x.  ( B  /  C ) ) )
 
Theoremdiv23ap 7670 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  B )  /  C )  =  ( ( A 
 /  C )  x.  B ) )
 
Theoremdiv32ap 7671 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  C  e.  CC )  ->  ( ( A 
 /  B )  x.  C )  =  ( A  x.  ( C 
 /  B ) ) )
 
Theoremdiv13ap 7672 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  C  e.  CC )  ->  ( ( A 
 /  B )  x.  C )  =  ( ( C  /  B )  x.  A ) )
 
Theoremdiv12ap 7673 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( A  x.  ( B  /  C ) )  =  ( B  x.  ( A  /  C ) ) )
 
Theoremdivdirap 7674 Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  +  B )  /  C )  =  ( ( A 
 /  C )  +  ( B  /  C ) ) )
 
Theoremdivcanap3 7675 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( B  x.  A )  /  B )  =  A )
 
Theoremdivcanap4 7676 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  x.  B )  /  B )  =  A )
 
Theoremdiv11ap 7677 One-to-one relationship for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  ( B  /  C )  <->  A  =  B ) )
 
Theoremdividap 7678 A number divided by itself is one. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A  /  A )  =  1 )
 
Theoremdiv0ap 7679 Division into zero is zero. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 0  /  A )  =  0 )
 
Theoremdiv1 7680 A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  /  1
 )  =  A )
 
Theorem1div1e1 7681 1 divided by 1 is 1 (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
 |-  ( 1  /  1
 )  =  1
 
Theoremdiveqap1 7682 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  =  1  <->  A  =  B ) )
 
Theoremdivnegap 7683 Move negative sign inside of a division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( A  /  B )  =  ( -u A  /  B ) )
 
Theoremdivsubdirap 7684 Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  -  B )  /  C )  =  ( ( A 
 /  C )  -  ( B  /  C ) ) )
 
Theoremrecrecap 7685 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  (
 1  /  A )
 )  =  A )
 
Theoremrec11ap 7686 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  =  (
 1  /  B )  <->  A  =  B ) )
 
Theoremrec11rap 7687 Mutual reciprocals. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  =  B  <->  ( 1  /  B )  =  A ) )
 
Theoremdivmuldivap 7688 Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D ) )  =  (
 ( A  x.  B )  /  ( C  x.  D ) ) )
 
Theoremdivdivdivap 7689 Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 ) 
 /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  (
 ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C ) ) )
 
Theoremdivcanap5 7690 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A )  /  ( C  x.  B ) )  =  ( A  /  B ) )
 
Theoremdivmul13ap 7691 Swap the denominators in the product of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D ) )  =  (
 ( B  /  C )  x.  ( A  /  D ) ) )
 
Theoremdivmul24ap 7692 Swap the numerators in the product of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D ) )  =  (
 ( A  /  D )  x.  ( B  /  C ) ) )
 
Theoremdivmuleqap 7693 Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  =  ( B  /  D ) 
 <->  ( A  x.  D )  =  ( B  x.  C ) ) )
 
Theoremrecdivap 7694 The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( 1  /  ( A  /  B ) )  =  ( B  /  A ) )
 
Theoremdivcanap6 7695 Cancellation of inverted fractions. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( A  /  B )  x.  ( B  /  A ) )  =  1 )
 
Theoremdivdiv32ap 7696 Swap denominators in a division. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  B )  /  C )  =  (
 ( A  /  C )  /  B ) )
 
Theoremdivcanap7 7697 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  C )  /  ( B  /  C ) )  =  ( A 
 /  B ) )
 
Theoremdmdcanap 7698 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  C  e.  CC )  ->  ( ( A  /  B )  x.  ( C  /  A ) )  =  ( C  /  B ) )
 
Theoremdivdivap1 7699 Division into a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  B )  /  C )  =  ( A  /  ( B  x.  C ) ) )
 
Theoremdivdivap2 7700 Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  /  ( B  /  C ) )  =  (
 ( A  x.  C )  /  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >