ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab2 Structured version   Unicode version

Theorem nfopab2 3818
Description: The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab2  F/_ { <. , 
>.  |  }

Proof of Theorem nfopab2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-opab 3810 . 2  { <. ,  >.  |  }  {  |  <. ,  >.  }
2 nfe1 1382 . . . 4  F/ 
<. ,  >.
32nfex 1525 . . 3  F/  <. ,  >.
43nfab 2179 . 2  F/_ {  |  <. , 
>.  }
51, 4nfcxfr 2172 1  F/_ { <. , 
>.  |  }
Colors of variables: wff set class
Syntax hints:   wa 97   wceq 1242  wex 1378   {cab 2023   F/_wnfc 2162   <.cop 3370   {copab 3808
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-opab 3810
This theorem is referenced by:  opelopabsb  3988  ssopab2b  4004  dmopab  4489  rnopab  4524  funopab  4878  0neqopab  5492
  Copyright terms: Public domain W3C validator