Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcxfr Unicode version

Theorem nfcxfr 2175
 Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1
nfcxfr.2
Assertion
Ref Expression
nfcxfr

Proof of Theorem nfcxfr
StepHypRef Expression
1 nfcxfr.2 . 2
2 nfceqi.1 . . 3
32nfceqi 2174 . 2
41, 3mpbir 134 1
 Colors of variables: wff set class Syntax hints:   wceq 1243  wnfc 2165 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-cleq 2033  df-clel 2036  df-nfc 2167 This theorem is referenced by:  nfrab1  2489  nfrabxy  2490  nfdif  3065  nfun  3099  nfin  3143  nfpw  3371  nfpr  3420  nfsn  3430  nfop  3565  nfuni  3586  nfint  3625  nfiunxy  3683  nfiinxy  3684  nfiunya  3685  nfiinya  3686  nfiu1  3687  nfii1  3688  nfopab  3825  nfopab1  3826  nfopab2  3827  nfmpt  3849  nfmpt1  3850  repizf2  3915  nfsuc  4145  nfxp  4371  nfco  4501  nfcnv  4514  nfdm  4578  nfrn  4579  nfres  4614  nfima  4676  nfiota1  4869  nffv  5185  fvmptss2  5247  fvmptssdm  5255  fvmptf  5263  ralrnmpt  5309  rexrnmpt  5310  f1ompt  5320  f1mpt  5410  fliftfun  5436  nfriota1  5475  riotaprop  5491  nfoprab1  5554  nfoprab2  5555  nfoprab3  5556  nfoprab  5557  nfmpt21  5571  nfmpt22  5572  nfmpt2  5573  ovmpt2s  5624  ov2gf  5625  ovi3  5637  nftpos  5894  nfrecs  5922  nffrec  5982  xpcomco  6300  caucvgprprlemaddq  6806  nfiseq  9218  nfsum1  9875  nfsum  9876
 Copyright terms: Public domain W3C validator