HomeHome Intuitionistic Logic Explorer
Theorem List (p. 27 of 102)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2601-2700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgencbvex2 2601* Restatement of gencbvex 2600 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th  ->  E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( E. x ( ch  /\  ph )  <->  E. y ( th  /\  ps ) )
 
Theoremgencbval 2602* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th 
 <-> 
 E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( A. x ( ch  ->  ph )  <->  A. y ( th  ->  ps ) )
 
Theoremsbhypf 2603* Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( y  =  A  ->  ( [
 y  /  x ] ph 
 <->  ps ) )
 
Theoremvtoclgft 2604 Closed theorem form of vtoclgf 2612. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  V )  ->  ps )
 
Theoremvtocldf 2605 Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ps )   &    |-  F/ x ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  ch )
 
Theoremvtocld 2606* Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ch )
 
Theoremvtoclf 2607* Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1640. (Contributed by NM, 30-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl 2608* Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl2 2609* Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl3 2610* Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  (
 ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtoclb 2611* Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( ph 
 <->  ps )   =>    |-  ( ch  <->  th )
 
Theoremvtoclgf 2612 Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclg 2613* Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclbg 2614* Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( ph 
 <->  ps )   =>    |-  ( A  e.  V  ->  ( ch  <->  th ) )
 
Theoremvtocl2gf 2615 Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
 
Theoremvtocl3gf 2616 Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   &    |-  F/_ y B   &    |-  F/_ z B   &    |-  F/_ z C   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  F/ z th   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  th )
 
Theoremvtocl2g 2617* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
 
Theoremvtoclgaf 2618* Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  B  ->  ps )
 
Theoremvtoclga 2619* Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  B  ->  ps )
 
Theoremvtocl2gaf 2620* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )   =>    |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ch )
 
Theoremvtocl2ga 2621* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  C  /\  y  e.  D )  ->  ph )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
 
Theoremvtocl3gaf 2622* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   &    |-  F/_ y B   &    |-  F/_ z B   &    |-  F/_ z C   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  F/ z th   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  S  /\  z  e.  T )  ->  ph )   =>    |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T ) 
 ->  th )
 
Theoremvtocl3ga 2623* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  D  /\  y  e.  R  /\  z  e.  S )  ->  ph )   =>    |-  ( ( A  e.  D  /\  B  e.  R  /\  C  e.  S ) 
 ->  th )
 
Theoremvtocleg 2624* Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
 |-  ( x  =  A  -> 
 ph )   =>    |-  ( A  e.  V  -> 
 ph )
 
Theoremvtoclegft 2625* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2626.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |-  ( ( A  e.  B  /\  F/ x ph  /\ 
 A. x ( x  =  A  ->  ph )
 )  ->  ph )
 
Theoremvtoclef 2626* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ph   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ph )   =>    |-  ph
 
Theoremvtocle 2627* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  ph )   =>    |-  ph
 
Theoremvtoclri 2628* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  A. x  e.  B  ph   =>    |-  ( A  e.  B  ->  ps )
 
Theoremspcimgft 2629 A closed version of spcimgf 2633. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph  ->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcgft 2630 A closed version of spcgf 2635. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcimegft 2631 A closed version of spcimegf 2634. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) ) 
 ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
 
Theoremspcegft 2632 A closed version of spcegf 2636. (Contributed by Jim Kingdon, 22-Jun-2018.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
 
Theoremspcimgf 2633 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph  ->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcimegf 2634 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  ( ps  ->  ph ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcgf 2635 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegf 2636 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcimdv 2637* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  ch )
 )
 
Theoremspcdv 2638* Rule of specialization, using implicit substitution. Analogous to rspcdv 2659. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  ->  ch ) )
 
Theoremspcimedv 2639* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x ps )
 )
 
Theoremspcgv 2640* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegv 2641* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspc2egv 2642* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
 
Theoremspc2gv 2643* Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps ) )
 
Theoremspc3egv 2644* Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps 
 ->  E. x E. y E. z ph ) )
 
Theoremspc3gv 2645* Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x A. y A. z ph  ->  ps ) )
 
Theoremspcv 2646* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspcev 2647* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x ph )
 
Theoremspc2ev 2648* Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x E. y ph )
 
Theoremrspct 2649* A closed version of rspc 2650. (Contributed by Andrew Salmon, 6-Jun-2011.)
 |- 
 F/ x ps   =>    |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 ) )
 
Theoremrspc 2650* Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 )
 
Theoremrspce 2651* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
 
Theoremrspcv 2652* Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 )
 
Theoremrspccv 2653* Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps )
 )
 
Theoremrspcva 2654* Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  ps )
 
Theoremrspccva 2655* Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A. x  e.  B  ph  /\  A  e.  B )  ->  ps )
 
Theoremrspcev 2656* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
 
Theoremrspcimdv 2657* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
 
Theoremrspcimedv 2658* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps ) )
 
Theoremrspcdv 2659* Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps  ->  ch ) )
 
Theoremrspcedv 2660* Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps ) )
 
Theoremrspc2 2661* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.)
 |- 
 F/ x ch   &    |-  F/ y ps   &    |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  ( y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps )
 )
 
Theoremrspc2v 2662* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
 
Theoremrspc2va 2663* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( ( A  e.  C  /\  B  e.  D )  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
 
Theoremrspc2ev 2664* 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
 
Theoremrspc3v 2665* 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  th ) )   &    |-  (
 z  =  C  ->  ( th  <->  ps ) )   =>    |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps )
 )
 
Theoremrspc3ev 2666* 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  th ) )   &    |-  (
 z  =  C  ->  ( th  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  /\  ps )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
 
Theoremeqvinc 2667* A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   =>    |-  ( A  =  B 
 <-> 
 E. x ( x  =  A  /\  x  =  B ) )
 
Theoremeqvincg 2668* A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.)
 |-  ( A  e.  V  ->  ( A  =  B  <->  E. x ( x  =  A  /\  x  =  B ) ) )
 
Theoremeqvincf 2669 A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  A  e.  _V   =>    |-  ( A  =  B  <->  E. x ( x  =  A  /\  x  =  B ) )
 
Theoremalexeq 2670* Two ways to express substitution of 
A for  x in  ph. (Contributed by NM, 2-Mar-1995.)
 |-  A  e.  _V   =>    |-  ( A. x ( x  =  A  -> 
 ph )  <->  E. x ( x  =  A  /\  ph )
 )
 
Theoremceqex 2671* Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
 |-  ( x  =  A  ->  ( ph  <->  E. x ( x  =  A  /\  ph )
 ) )
 
Theoremceqsexg 2672* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
 
Theoremceqsexgv 2673* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
 
Theoremceqsrexv 2674* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps ) )
 
Theoremceqsrexbv 2675* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ( A  e.  B  /\  ps ) )
 
Theoremceqsrex2v 2676* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  ch ) )
 
Theoremclel2 2677* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <-> 
 A. x ( x  =  A  ->  x  e.  B ) )
 
Theoremclel3g 2678* An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
 |-  ( B  e.  V  ->  ( A  e.  B  <->  E. x ( x  =  B  /\  A  e.  x ) ) )
 
Theoremclel3 2679* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
 |-  B  e.  _V   =>    |-  ( A  e.  B 
 <-> 
 E. x ( x  =  B  /\  A  e.  x ) )
 
Theoremclel4 2680* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
 |-  B  e.  _V   =>    |-  ( A  e.  B 
 <-> 
 A. x ( x  =  B  ->  A  e.  x ) )
 
Theorempm13.183 2681* Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only  A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
 |-  ( A  e.  V  ->  ( A  =  B  <->  A. z ( z  =  A  <->  z  =  B ) ) )
 
Theoremrr19.3v 2682* Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 25-Oct-2012.)
 |-  ( A. x  e.  A  A. y  e.  A  ph  <->  A. x  e.  A  ph )
 
Theoremrr19.28v 2683* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
 |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <-> 
 A. x  e.  A  ( ph  /\  A. y  e.  A  ps ) )
 
Theoremelabgt 2684* Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2688.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) ) ) 
 ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelabgf 2685 Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelabf 2686* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  |  ph }  <->  ps )
 
Theoremelab 2687* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  { x  |  ph }  <->  ps )
 
Theoremelabg 2688* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelab2g 2689* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  B  =  { x  |  ph }   =>    |-  ( A  e.  V  ->  ( A  e.  B  <->  ps ) )
 
Theoremelab2 2690* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  B  =  { x  |  ph }   =>    |-  ( A  e.  B  <->  ps )
 
Theoremelab4g 2691* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  B  =  { x  |  ph }   =>    |-  ( A  e.  B  <->  ( A  e.  _V  /\  ps ) )
 
Theoremelab3gf 2692 Membership in a class abstraction, with a weaker antecedent than elabgf 2685. (Contributed by NM, 6-Sep-2011.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( ps 
 ->  A  e.  B ) 
 ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelab3g 2693* Membership in a class abstraction, with a weaker antecedent than elabg 2688. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( ps 
 ->  A  e.  B ) 
 ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelab3 2694* Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.)
 |-  ( ps  ->  A  e.  _V )   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  |  ph }  <->  ps )
 
Theoremelrabi 2695* Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
 |-  ( A  e.  { x  e.  V  |  ph
 }  ->  A  e.  V )
 
Theoremelrabf 2696 Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/ x ps   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ( A  e.  B  /\  ps ) )
 
Theoremelrab3t 2697* Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 2699.) (Contributed by Thierry Arnoux, 31-Aug-2017.)
 |-  ( ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  B )  ->  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ps ) )
 
Theoremelrab 2698* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ( A  e.  B  /\  ps ) )
 
Theoremelrab3 2699* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ps ) )
 
Theoremelrab2 2700* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  C  =  { x  e.  B  |  ph }   =>    |-  ( A  e.  C  <->  ( A  e.  B  /\  ps ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >