![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 |
![]() ![]() ![]() ![]() |
nfbr.2 |
![]() ![]() ![]() ![]() |
nfbr.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfbr |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfbr.2 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfbr.3 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | nfbrd 3807 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | trud 1252 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 |
This theorem is referenced by: sbcbrg 3813 nfpo 4038 nfso 4039 pofun 4049 nfse 4078 nffrfor 4085 nfwe 4092 nfco 4501 nfcnv 4514 dfdmf 4528 dfrnf 4575 nfdm 4578 dffun6f 4915 dffun4f 4918 nffv 5185 funfvdm2f 5238 fvmptss2 5247 f1ompt 5320 fmptco 5330 nfiso 5446 ofrfval2 5727 tposoprab 5895 xpcomco 6300 caucvgprprlemaddq 6806 nfsum1 9875 nfsum 9876 |
Copyright terms: Public domain | W3C validator |