ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum1 Unicode version

Theorem nfsum1 9875
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypothesis
Ref Expression
nfsum1.1  |-  F/_ k A
Assertion
Ref Expression
nfsum1  |-  F/_ k sum_ k  e.  A  B

Proof of Theorem nfsum1
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 9873 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
2 nfcv 2178 . . . . 5  |-  F/_ k ZZ
3 nfsum1.1 . . . . . . 7  |-  F/_ k A
4 nfcv 2178 . . . . . . 7  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 2938 . . . . . 6  |-  F/ k  A  C_  ( ZZ>= `  m )
6 nfcv 2178 . . . . . . . 8  |-  F/_ k
m
7 nfcv 2178 . . . . . . . 8  |-  F/_ k  +
83nfcri 2172 . . . . . . . . . 10  |-  F/ k  n  e.  A
9 nfcsb1v 2882 . . . . . . . . . 10  |-  F/_ k [_ n  /  k ]_ B
10 nfcv 2178 . . . . . . . . . 10  |-  F/_ k
0
118, 9, 10nfif 3356 . . . . . . . . 9  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
122, 11nfmpt 3849 . . . . . . . 8  |-  F/_ k
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
13 nfcv 2178 . . . . . . . 8  |-  F/_ k CC
146, 7, 12, 13nfiseq 9218 . . . . . . 7  |-  F/_ k  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )
15 nfcv 2178 . . . . . . 7  |-  F/_ k  ~~>
16 nfcv 2178 . . . . . . 7  |-  F/_ k
x
1714, 15, 16nfbr 3808 . . . . . 6  |-  F/ k  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x
185, 17nfan 1457 . . . . 5  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )
192, 18nfrexya 2363 . . . 4  |-  F/ k E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )
20 nfcv 2178 . . . . 5  |-  F/_ k NN
21 nfcv 2178 . . . . . . . 8  |-  F/_ k
f
22 nfcv 2178 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
2321, 22, 3nff1o 5124 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
24 nfcv 2178 . . . . . . . . . 10  |-  F/_ k
1
25 nfcsb1v 2882 . . . . . . . . . . 11  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
2620, 25nfmpt 3849 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
2724, 7, 26, 13nfiseq 9218 . . . . . . . . 9  |-  F/_ k  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC )
2827, 6nffv 5185 . . . . . . . 8  |-  F/_ k
(  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
2928nfeq2 2189 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
3023, 29nfan 1457 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3130nfex 1528 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ,  CC ) `
 m ) )
3220, 31nfrexya 2363 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3319, 32nfor 1466 . . 3  |-  F/ k ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
) )
3433nfiotaxy 4871 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
351, 34nfcxfr 2175 1  |-  F/_ k sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 97    \/ wo 629    = wceq 1243   E.wex 1381    e. wcel 1393   F/_wnfc 2165   E.wrex 2307   [_csb 2852    C_ wss 2917   ifcif 3331   class class class wbr 3764    |-> cmpt 3818   iotacio 4865   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512   CCcc 6887   0cc0 6889   1c1 6890    + caddc 6892   NNcn 7914   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874    seqcseq 9211    ~~> cli 9799   sum_csu 9872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-if 3332  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-recs 5920  df-frec 5978  df-iseq 9212  df-sum 9873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator