ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum Unicode version

Theorem nfsum 9876
Description: Bound-variable hypothesis builder for sum: if  x is (effectively) not free in  A and  B, it is not free in  sum_ k  e.  A B. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1  |-  F/_ x A
nfsum.2  |-  F/_ x B
Assertion
Ref Expression
nfsum  |-  F/_ x sum_ k  e.  A  B

Proof of Theorem nfsum
Dummy variables  f  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 9873 . 2  |-  sum_ k  e.  A  B  =  ( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
2 nfcv 2178 . . . . 5  |-  F/_ x ZZ
3 nfsum.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2178 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 2938 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
6 nfcv 2178 . . . . . . . 8  |-  F/_ x m
7 nfcv 2178 . . . . . . . 8  |-  F/_ x  +
83nfcri 2172 . . . . . . . . . 10  |-  F/ x  n  e.  A
9 nfcv 2178 . . . . . . . . . . 11  |-  F/_ x n
10 nfsum.2 . . . . . . . . . . 11  |-  F/_ x B
119, 10nfcsb 2884 . . . . . . . . . 10  |-  F/_ x [_ n  /  k ]_ B
12 nfcv 2178 . . . . . . . . . 10  |-  F/_ x
0
138, 11, 12nfif 3356 . . . . . . . . 9  |-  F/_ x if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
142, 13nfmpt 3849 . . . . . . . 8  |-  F/_ x
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
15 nfcv 2178 . . . . . . . 8  |-  F/_ x CC
166, 7, 14, 15nfiseq 9218 . . . . . . 7  |-  F/_ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )
17 nfcv 2178 . . . . . . 7  |-  F/_ x  ~~>
18 nfcv 2178 . . . . . . 7  |-  F/_ x
z
1916, 17, 18nfbr 3808 . . . . . 6  |-  F/ x  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z
205, 19nfan 1457 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )
212, 20nfrexya 2363 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )
22 nfcv 2178 . . . . 5  |-  F/_ x NN
23 nfcv 2178 . . . . . . . 8  |-  F/_ x
f
24 nfcv 2178 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
2523, 24, 3nff1o 5124 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
26 nfcv 2178 . . . . . . . . . 10  |-  F/_ x
1
27 nfcv 2178 . . . . . . . . . . . 12  |-  F/_ x
( f `  n
)
2827, 10nfcsb 2884 . . . . . . . . . . 11  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
2922, 28nfmpt 3849 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
3026, 7, 29, 15nfiseq 9218 . . . . . . . . 9  |-  F/_ x  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC )
3130, 6nffv 5185 . . . . . . . 8  |-  F/_ x
(  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
3231nfeq2 2189 . . . . . . 7  |-  F/ x  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
3325, 32nfan 1457 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3433nfex 1528 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3522, 34nfrexya 2363 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
)
3621, 35nfor 1466 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ,  CC ) `  m )
) )
3736nfiotaxy 4871 . 2  |-  F/_ x
( iota z ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ,  CC ) `  m )
) ) )
381, 37nfcxfr 2175 1  |-  F/_ x sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 97    \/ wo 629    = wceq 1243   E.wex 1381    e. wcel 1393   F/_wnfc 2165   E.wrex 2307   [_csb 2852    C_ wss 2917   ifcif 3331   class class class wbr 3764    |-> cmpt 3818   iotacio 4865   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512   CCcc 6887   0cc0 6889   1c1 6890    + caddc 6892   NNcn 7914   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874    seqcseq 9211    ~~> cli 9799   sum_csu 9872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-if 3332  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-recs 5920  df-frec 5978  df-iseq 9212  df-sum 9873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator