ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ompt Unicode version

Theorem f1ompt 5320
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
Assertion
Ref Expression
f1ompt  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    y, F
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem f1ompt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ffn 5046 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
2 dff1o4 5134 . . . . . 6  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
32baib 828 . . . . 5  |-  ( F  Fn  A  ->  ( F : A -1-1-onto-> B  <->  `' F  Fn  B
) )
41, 3syl 14 . . . 4  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  `' F  Fn  B ) )
5 fnres 5015 . . . . . 6  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! z 
y `' F z )
6 nfcv 2178 . . . . . . . . . 10  |-  F/_ x
z
7 fmpt.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  A  |->  C )
8 nfmpt1 3850 . . . . . . . . . . 11  |-  F/_ x
( x  e.  A  |->  C )
97, 8nfcxfr 2175 . . . . . . . . . 10  |-  F/_ x F
10 nfcv 2178 . . . . . . . . . 10  |-  F/_ x
y
116, 9, 10nfbr 3808 . . . . . . . . 9  |-  F/ x  z F y
12 nfv 1421 . . . . . . . . 9  |-  F/ z ( x  e.  A  /\  y  =  C
)
13 breq1 3767 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z F y  <->  x F
y ) )
14 df-mpt 3820 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
157, 14eqtri 2060 . . . . . . . . . . . 12  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1615breqi 3770 . . . . . . . . . . 11  |-  ( x F y  <->  x { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) } y )
17 df-br 3765 . . . . . . . . . . . 12  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } )
18 opabid 3994 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  <->  ( x  e.  A  /\  y  =  C ) )
1917, 18bitri 173 . . . . . . . . . . 11  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <-> 
( x  e.  A  /\  y  =  C
) )
2016, 19bitri 173 . . . . . . . . . 10  |-  ( x F y  <->  ( x  e.  A  /\  y  =  C ) )
2113, 20syl6bb 185 . . . . . . . . 9  |-  ( z  =  x  ->  (
z F y  <->  ( x  e.  A  /\  y  =  C ) ) )
2211, 12, 21cbveu 1924 . . . . . . . 8  |-  ( E! z  z F y  <-> 
E! x ( x  e.  A  /\  y  =  C ) )
23 vex 2560 . . . . . . . . . 10  |-  y  e. 
_V
24 vex 2560 . . . . . . . . . 10  |-  z  e. 
_V
2523, 24brcnv 4518 . . . . . . . . 9  |-  ( y `' F z  <->  z F
y )
2625eubii 1909 . . . . . . . 8  |-  ( E! z  y `' F
z  <->  E! z  z F y )
27 df-reu 2313 . . . . . . . 8  |-  ( E! x  e.  A  y  =  C  <->  E! x
( x  e.  A  /\  y  =  C
) )
2822, 26, 273bitr4i 201 . . . . . . 7  |-  ( E! z  y `' F
z  <->  E! x  e.  A  y  =  C )
2928ralbii 2330 . . . . . 6  |-  ( A. y  e.  B  E! z  y `' F
z  <->  A. y  e.  B  E! x  e.  A  y  =  C )
305, 29bitri 173 . . . . 5  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! x  e.  A  y  =  C )
31 relcnv 4703 . . . . . . 7  |-  Rel  `' F
32 df-rn 4356 . . . . . . . 8  |-  ran  F  =  dom  `' F
33 frn 5052 . . . . . . . 8  |-  ( F : A --> B  ->  ran  F  C_  B )
3432, 33syl5eqssr 2990 . . . . . . 7  |-  ( F : A --> B  ->  dom  `' F  C_  B )
35 relssres 4648 . . . . . . 7  |-  ( ( Rel  `' F  /\  dom  `' F  C_  B )  ->  ( `' F  |`  B )  =  `' F )
3631, 34, 35sylancr 393 . . . . . 6  |-  ( F : A --> B  -> 
( `' F  |`  B )  =  `' F )
3736fneq1d 4989 . . . . 5  |-  ( F : A --> B  -> 
( ( `' F  |`  B )  Fn  B  <->  `' F  Fn  B ) )
3830, 37syl5bbr 183 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E! x  e.  A  y  =  C  <->  `' F  Fn  B
) )
394, 38bitr4d 180 . . 3  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  A. y  e.  B  E! x  e.  A  y  =  C ) )
4039pm5.32i 427 . 2  |-  ( ( F : A --> B  /\  F : A -1-1-onto-> B )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
41 f1of 5126 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
4241pm4.71ri 372 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A
--> B  /\  F : A
-1-1-onto-> B ) )
437fmpt 5319 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
4443anbi1i 431 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
4540, 42, 443bitr4i 201 1  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   E!weu 1900   A.wral 2306   E!wreu 2308    C_ wss 2917   <.cop 3378   class class class wbr 3764   {copab 3817    |-> cmpt 3818   `'ccnv 4344   dom cdm 4345   ran crn 4346    |` cres 4347   Rel wrel 4350    Fn wfn 4897   -->wf 4898   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  icoshftf1o  8859
  Copyright terms: Public domain W3C validator