ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshftf1o Unicode version

Theorem icoshftf1o 8859
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
Assertion
Ref Expression
icoshftf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    F( x)

Proof of Theorem icoshftf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icoshft 8858 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
x  e.  ( A [,) B )  -> 
( x  +  C
)  e.  ( ( A  +  C ) [,) ( B  +  C ) ) ) )
21ralrimiv 2391 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) )
3 readdcl 7007 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
433adant2 923 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
5 readdcl 7007 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
653adant1 922 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
7 renegcl 7272 . . . . . . . . 9  |-  ( C  e.  RR  ->  -u C  e.  RR )
873ad2ant3 927 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u C  e.  RR )
9 icoshft 8858 . . . . . . . 8  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR  /\  -u C  e.  RR )  ->  ( y  e.  ( ( A  +  C ) [,) ( B  +  C )
)  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) ) )
104, 6, 8, 9syl3anc 1135 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
y  e.  ( ( A  +  C ) [,) ( B  +  C ) )  -> 
( y  +  -u C )  e.  ( ( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) ) ) )
1110imp 115 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) )
126rexrd 7075 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR* )
13 icossre 8823 . . . . . . . . . 10  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( A  +  C ) [,) ( B  +  C )
)  C_  RR )
144, 12, 13syl2anc 391 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
) [,) ( B  +  C ) ) 
C_  RR )
1514sselda 2945 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  RR )
1615recnd 7054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  CC )
17 simpl3 909 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  RR )
1817recnd 7054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  CC )
1916, 18negsubd 7328 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  =  ( y  -  C
) )
204recnd 7054 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  CC )
21 simp3 906 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
2221recnd 7054 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
2320, 22negsubd 7328 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  ( ( A  +  C )  -  C ) )
24 simp1 904 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2524recnd 7054 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
2625, 22pncand 7323 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  -  C )  =  A )
2723, 26eqtrd 2072 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  A )
286recnd 7054 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  CC )
2928, 22negsubd 7328 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  ( ( B  +  C )  -  C ) )
30 simp2 905 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3130recnd 7054 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
3231, 22pncand 7323 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  -  C )  =  B )
3329, 32eqtrd 2072 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  B )
3427, 33oveq12d 5530 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) )  =  ( A [,) B ) )
3534adantr 261 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( (
( A  +  C
)  +  -u C
) [,) ( ( B  +  C )  +  -u C ) )  =  ( A [,) B ) )
3611, 19, 353eltr3d 2120 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  -  C )  e.  ( A [,) B ) )
37 reueq 2738 . . . . 5  |-  ( ( y  -  C )  e.  ( A [,) B )  <->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3836, 37sylib 127 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3915adantr 261 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  RR )
4039recnd 7054 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  CC )
41 simpll3 945 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  RR )
4241recnd 7054 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  CC )
43 simpl1 907 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  A  e.  RR )
44 simpl2 908 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR )
4544rexrd 7075 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR* )
46 icossre 8823 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
4743, 45, 46syl2anc 391 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( A [,) B )  C_  RR )
4847sselda 2945 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  RR )
4948recnd 7054 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  CC )
5040, 42, 49subadd2d 7341 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
( y  -  C
)  =  x  <->  ( x  +  C )  =  y ) )
51 eqcom 2042 . . . . . 6  |-  ( x  =  ( y  -  C )  <->  ( y  -  C )  =  x )
52 eqcom 2042 . . . . . 6  |-  ( y  =  ( x  +  C )  <->  ( x  +  C )  =  y )
5350, 51, 523bitr4g 212 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
x  =  ( y  -  C )  <->  y  =  ( x  +  C
) ) )
5453reubidva 2492 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( E! x  e.  ( A [,) B ) x  =  ( y  -  C
)  <->  E! x  e.  ( A [,) B ) y  =  ( x  +  C ) ) )
5538, 54mpbid 135 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
5655ralrimiva 2392 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
57 icoshftf1o.1 . . 3  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
5857f1ompt 5320 . 2  |-  ( F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  /\  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) ) )
592, 56, 58sylanbrc 394 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306   E!wreu 2308    C_ wss 2917    |-> cmpt 3818   -1-1-onto->wf1o 4901  (class class class)co 5512   RRcr 6888    + caddc 6892   RR*cxr 7059    - cmin 7182   -ucneg 7183   [,)cico 8759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-ico 8763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator