ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrd Unicode version

Theorem rexrd 7075
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
rexrd  |-  ( ph  ->  A  e.  RR* )

Proof of Theorem rexrd
StepHypRef Expression
1 ressxr 7069 . 2  |-  RR  C_  RR*
2 rexrd.1 . 2  |-  ( ph  ->  A  e.  RR )
31, 2sseldi 2943 1  |-  ( ph  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1393   RRcr 6888   RR*cxr 7059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-xr 7064
This theorem is referenced by:  rpxr  8590  rpxrd  8623  xnegcl  8745  iooshf  8821  icoshftf1o  8859  modqelico  9176  elicc4abs  9690
  Copyright terms: Public domain W3C validator