Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseldi | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
Ref | Expression |
---|---|
sseli.1 | |
sseldi.2 |
Ref | Expression |
---|---|
sseldi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseldi.2 | . 2 | |
2 | sseli.1 | . . 3 | |
3 | 2 | sseli 2941 | . 2 |
4 | 1, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 1393 wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 |
This theorem is referenced by: riotacl 5482 riotasbc 5483 elmpt2cl 5698 ofrval 5722 mpt2xopn0yelv 5854 tpostpos 5879 smores 5907 prarloclemcalc 6600 rereceu 6963 recriota 6964 rexrd 7075 nnred 7927 nncnd 7928 un0addcl 8215 un0mulcl 8216 nnnn0d 8235 nn0red 8236 nn0zd 8358 zred 8360 rpred 8622 ige2m1fz 8972 iseqcaopr2 9241 expcl2lemap 9267 m1expcl 9278 |
Copyright terms: Public domain | W3C validator |