![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseldi | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
Ref | Expression |
---|---|
sseli.1 |
![]() ![]() ![]() ![]() |
sseldi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseldi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseldi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sseli.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseli 2935 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-in 2918 df-ss 2925 |
This theorem is referenced by: riotacl 5425 riotasbc 5426 elmpt2cl 5640 ofrval 5664 mpt2xopn0yelv 5795 tpostpos 5820 smores 5848 prarloclemcalc 6485 rexrd 6872 nnred 7708 nncnd 7709 un0addcl 7991 un0mulcl 7992 nnnn0d 8011 nn0red 8012 nn0zd 8134 zred 8136 rpred 8397 ige2m1fz 8742 expcl2lemap 8921 m1expcl 8932 |
Copyright terms: Public domain | W3C validator |