Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rab | Unicode version |
Description: Define a restricted class abstraction (class builder), which is the class of all in such that is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 | |
2 | vx | . . 3 | |
3 | cA | . . 3 | |
4 | 1, 2, 3 | crab 2310 | . 2 |
5 | 2 | cv 1242 | . . . . 5 |
6 | 5, 3 | wcel 1393 | . . . 4 |
7 | 6, 1 | wa 97 | . . 3 |
8 | 7, 2 | cab 2026 | . 2 |
9 | 4, 8 | wceq 1243 | 1 |
Colors of variables: wff set class |
This definition is referenced by: rabid 2485 rabid2 2486 rabbi 2487 rabswap 2488 nfrab1 2489 nfrabxy 2490 rabbiia 2547 rabeqf 2550 cbvrab 2555 rabab 2575 elrabi 2695 elrabf 2696 elrab3t 2697 ralrab2 2706 rexrab2 2708 cbvrabcsf 2911 dfin5 2925 dfdif2 2926 ss2rab 3016 rabss 3017 ssrab 3018 rabss2 3023 ssrab2 3025 rabssab 3027 notab 3207 unrab 3208 inrab 3209 inrab2 3210 difrab 3211 dfrab2 3212 dfrab3 3213 notrab 3214 rabun2 3216 dfnul3 3227 rabn0r 3244 rabn0m 3245 rab0 3246 rabeq0 3247 dfif6 3333 rabsn 3437 reusn 3441 rabsneu 3443 elunirab 3593 elintrab 3627 ssintrab 3638 iunrab 3704 iinrabm 3719 intexrabim 3907 repizf2 3915 exss 3963 rabxp 4380 exse2 4699 mptpreima 4814 fndmin 5274 fncnvima2 5288 riotauni 5474 riotacl2 5481 snriota 5497 xp2 5799 unielxp 5800 dfopab2 5815 nnzrab 8269 nn0zrab 8270 shftlem 9417 shftuz 9418 shftdm 9423 bdcrab 9972 |
Copyright terms: Public domain | W3C validator |