ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 Unicode version

Theorem rab0 3243
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0  {  (/)  |  }  (/)

Proof of Theorem rab0
StepHypRef Expression
1 noel 3225 . . . . 5  (/)
21intnanr 839 . . . 4  (/)
3 equid 1589 . . . . 5
43notnoti 574 . . . 4
52, 42false 617 . . 3  (/)
65abbii 2153 . 2  {  |  (/)  }  {  |  }
7 df-rab 2312 . 2  {  (/)  |  }  {  |  (/)  }
8 dfnul2 3223 . 2  (/)  {  |  }
96, 7, 83eqtr4i 2070 1  {  (/)  |  }  (/)
Colors of variables: wff set class
Syntax hints:   wn 3   wa 97   wceq 1243   wcel 1393   {cab 2026   {crab 2307   (/)c0 3221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2312  df-v 2556  df-dif 2917  df-nul 3222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator