Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab0 Unicode version

Theorem rab0 3246
 Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rab0

Proof of Theorem rab0
StepHypRef Expression
1 noel 3228 . . . . 5
21intnanr 839 . . . 4
3 equid 1589 . . . . 5
43notnoti 574 . . . 4
52, 42false 617 . . 3
65abbii 2153 . 2
7 df-rab 2315 . 2
8 dfnul2 3226 . 2
96, 7, 83eqtr4i 2070 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 97   wceq 1243   wcel 1393  cab 2026  crab 2310  c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-dif 2920  df-nul 3225 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator