Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | |
3eqtr4i.2 | |
3eqtr4i.3 |
Ref | Expression |
---|---|
3eqtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 | |
2 | 3eqtr4i.3 | . . 3 | |
3 | 3eqtr4i.1 | . . 3 | |
4 | 2, 3 | eqtr4i 2063 | . 2 |
5 | 1, 4 | eqtr4i 2063 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: rabswap 2488 rabbiia 2547 cbvrab 2555 cbvcsb 2856 csbco 2861 cbvrabcsf 2911 un4 3103 in13 3150 in31 3151 in4 3153 indifcom 3183 indir 3186 undir 3187 notrab 3214 dfnul3 3227 rab0 3246 prcom 3446 tprot 3463 tpcoma 3464 tpcomb 3465 tpass 3466 qdassr 3468 pw0 3511 opid 3567 int0 3629 cbviun 3694 cbviin 3695 iunrab 3704 iunin1 3721 cbvopab 3828 cbvopab1 3830 cbvopab2 3831 cbvopab1s 3832 cbvopab2v 3834 unopab 3836 cbvmpt 3851 iunopab 4018 uniuni 4183 2ordpr 4249 rabxp 4380 fconstmpt 4387 inxp 4470 cnvco 4520 rnmpt 4582 resundi 4625 resundir 4626 resindi 4627 resindir 4628 rescom 4636 resima 4643 imadmrn 4678 cnvimarndm 4689 cnvi 4728 rnun 4732 imaundi 4736 cnvxp 4742 imainrect 4766 imacnvcnv 4785 resdmres 4812 imadmres 4813 mptpreima 4814 cbviota 4872 sb8iota 4874 resdif 5148 cbvriota 5478 dfoprab2 5552 cbvoprab1 5576 cbvoprab2 5577 cbvoprab12 5578 cbvoprab3 5580 cbvmpt2x 5582 resoprab 5597 caov32 5688 caov31 5690 ofmres 5763 dfopab2 5815 dfxp3 5820 dmmpt2ssx 5825 fmpt2x 5826 tposco 5890 xpcomco 6300 dmaddpi 6423 dmmulpi 6424 dfplpq2 6452 dfmpq2 6453 dmaddpq 6477 dmmulpq 6478 axi2m1 6949 nummac 8399 fzprval 8944 fztpval 8945 sqdivapi 9337 binom2i 9360 shftidt2 9433 cji 9502 |
Copyright terms: Public domain | W3C validator |