ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpq Unicode version

Theorem dmaddpq 6477
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmaddpq  |-  dom  +Q  =  ( Q.  X.  Q. )

Proof of Theorem dmaddpq
Dummy variables  x  y  z  v  w  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 5585 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
2 df-plqqs 6447 . . . 4  |-  +Q  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
32dmeqi 4536 . . 3  |-  dom  +Q  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
4 dmaddpqlem 6475 . . . . . . . . 9  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
5 dmaddpqlem 6475 . . . . . . . . 9  |-  ( y  e.  Q.  ->  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  )
64, 5anim12i 321 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
7 ee4anv 1809 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) 
<->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
86, 7sylibr 137 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) )
9 enqex 6458 . . . . . . . . . . . . . 14  |-  ~Q  e.  _V
10 ecexg 6110 . . . . . . . . . . . . . 14  |-  (  ~Q  e.  _V  ->  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  e.  _V )
119, 10ax-mp 7 . . . . . . . . . . . . 13  |-  [ (
<. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  e.  _V
1211isseti 2563 . . . . . . . . . . . 12  |-  E. z 
z  =  [ (
<. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q
13 ax-ia3 101 . . . . . . . . . . . . 13  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f >. ) ]  ~Q  ->  ( (
x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1413eximdv 1760 . . . . . . . . . . . 12  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( E. z 
z  =  [ (
<. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1512, 14mpi 15 . . . . . . . . . . 11  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
16152eximi 1492 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
17 exrot3 1580 . . . . . . . . . 10  |-  ( E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
1816, 17sylibr 137 . . . . . . . . 9  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
19182eximi 1492 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
20 exrot3 1580 . . . . . . . 8  |-  ( E. z E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
2119, 20sylibr 137 . . . . . . 7  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
228, 21syl 14 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
2322pm4.71i 371 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
24 19.42v 1786 . . . . 5  |-  ( E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2523, 24bitr4i 176 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2625opabbii 3824 . . 3  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q. ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
271, 3, 263eqtr4i 2070 . 2  |-  dom  +Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q. ) }
28 df-xp 4351 . 2  |-  ( Q. 
X.  Q. )  =  { <. x ,  y >.  |  ( x  e. 
Q.  /\  y  e.  Q. ) }
2927, 28eqtr4i 2063 1  |-  dom  +Q  =  ( Q.  X.  Q. )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   <.cop 3378   {copab 3817    X. cxp 4343   dom cdm 4345  (class class class)co 5512   {coprab 5513   [cec 6104    +pQ cplpq 6374    ~Q ceq 6377   Q.cnq 6378    +Q cplq 6380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-iom 4314  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-oprab 5516  df-ec 6108  df-qs 6112  df-ni 6402  df-enq 6445  df-nqqs 6446  df-plqqs 6447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator