ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indifcom Unicode version

Theorem indifcom 3183
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
Assertion
Ref Expression
indifcom  |-  ( A  i^i  ( B  \  C ) )  =  ( B  i^i  ( A  \  C ) )

Proof of Theorem indifcom
StepHypRef Expression
1 incom 3129 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
21difeq1i 3058 . 2  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( B  i^i  A )  \  C )
3 indif2 3181 . 2  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )
4 indif2 3181 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( B  i^i  A )  \  C )
52, 3, 43eqtr4i 2070 1  |-  ( A  i^i  ( B  \  C ) )  =  ( B  i^i  ( A  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1243    \ cdif 2914    i^i cin 2916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-dif 2920  df-in 2924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator