ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab1 Unicode version

Theorem cbvoprab1 5563
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab1.1  |-  F/ w ph
cbvoprab1.2  |-  F/ x ps
cbvoprab1.3  |-  ( x  =  w  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvoprab1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  y >. ,  z
>.  |  ps }
Distinct variable group:    x, y, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)

Proof of Theorem cbvoprab1
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . . . . 6  |-  F/ w  v  =  <. x ,  y >.
2 cbvoprab1.1 . . . . . 6  |-  F/ w ph
31, 2nfan 1457 . . . . 5  |-  F/ w
( v  =  <. x ,  y >.  /\  ph )
43nfex 1528 . . . 4  |-  F/ w E. y ( v  = 
<. x ,  y >.  /\  ph )
5 nfv 1421 . . . . . 6  |-  F/ x  v  =  <. w ,  y >.
6 cbvoprab1.2 . . . . . 6  |-  F/ x ps
75, 6nfan 1457 . . . . 5  |-  F/ x
( v  =  <. w ,  y >.  /\  ps )
87nfex 1528 . . . 4  |-  F/ x E. y ( v  = 
<. w ,  y >.  /\  ps )
9 opeq1 3546 . . . . . . 7  |-  ( x  =  w  ->  <. x ,  y >.  =  <. w ,  y >. )
109eqeq2d 2051 . . . . . 6  |-  ( x  =  w  ->  (
v  =  <. x ,  y >.  <->  v  =  <. w ,  y >.
) )
11 cbvoprab1.3 . . . . . 6  |-  ( x  =  w  ->  ( ph 
<->  ps ) )
1210, 11anbi12d 442 . . . . 5  |-  ( x  =  w  ->  (
( v  =  <. x ,  y >.  /\  ph ) 
<->  ( v  =  <. w ,  y >.  /\  ps ) ) )
1312exbidv 1706 . . . 4  |-  ( x  =  w  ->  ( E. y ( v  = 
<. x ,  y >.  /\  ph )  <->  E. y
( v  =  <. w ,  y >.  /\  ps ) ) )
144, 8, 13cbvex 1639 . . 3  |-  ( E. x E. y ( v  =  <. x ,  y >.  /\  ph ) 
<->  E. w E. y
( v  =  <. w ,  y >.  /\  ps ) )
1514opabbii 3821 . 2  |-  { <. v ,  z >.  |  E. x E. y ( v  =  <. x ,  y
>.  /\  ph ) }  =  { <. v ,  z >.  |  E. w E. y ( v  =  <. w ,  y
>.  /\  ps ) }
16 dfoprab2 5539 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. v ,  z >.  |  E. x E. y ( v  =  <. x ,  y
>.  /\  ph ) }
17 dfoprab2 5539 . 2  |-  { <. <.
w ,  y >. ,  z >.  |  ps }  =  { <. v ,  z >.  |  E. w E. y ( v  =  <. w ,  y
>.  /\  ps ) }
1815, 16, 173eqtr4i 2070 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   F/wnf 1349   E.wex 1381   <.cop 3375   {copab 3814   {coprab 5500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-opab 3816  df-oprab 5503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator