ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab2 Unicode version

Theorem dfoprab2 5530
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
Distinct variable groups:    x, z, w   
y, z, w    ph, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dfoprab2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 excom 1554 . . . 4  |-  ( E. z E. w E. x E. y ( v  =  <. w ,  z
>.  /\  ( w  = 
<. x ,  y >.  /\  ph ) )  <->  E. w E. z E. x E. y ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) ) )
2 exrot4 1581 . . . . 5  |-  ( E. z E. w E. x E. y ( v  =  <. w ,  z
>.  /\  ( w  = 
<. x ,  y >.  /\  ph ) )  <->  E. x E. y E. z E. w ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) ) )
3 opeq1 3546 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
43eqeq2d 2051 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( v  = 
<. w ,  z >.  <->  v  =  <. <. x ,  y
>. ,  z >. ) )
54pm5.32ri 428 . . . . . . . . . 10  |-  ( ( v  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  <->  ( v  = 
<. <. x ,  y
>. ,  z >.  /\  w  =  <. x ,  y >. )
)
65anbi1i 431 . . . . . . . . 9  |-  ( ( ( v  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )  <->  ( ( v  =  <. <.
x ,  y >. ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )
)
7 anass 381 . . . . . . . . 9  |-  ( ( ( v  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )  <->  ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) ) )
8 an32 496 . . . . . . . . 9  |-  ( ( ( v  =  <. <.
x ,  y >. ,  z >.  /\  w  =  <. x ,  y
>. )  /\  ph )  <->  ( ( v  =  <. <.
x ,  y >. ,  z >.  /\  ph )  /\  w  =  <. x ,  y >. )
)
96, 7, 83bitr3i 199 . . . . . . . 8  |-  ( ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  ( (
v  =  <. <. x ,  y >. ,  z
>.  /\  ph )  /\  w  =  <. x ,  y >. ) )
109exbii 1496 . . . . . . 7  |-  ( E. w ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. w
( ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  w  =  <. x ,  y
>. ) )
11 vex 2557 . . . . . . . . . 10  |-  x  e. 
_V
12 vex 2557 . . . . . . . . . 10  |-  y  e. 
_V
1311, 12opex 3963 . . . . . . . . 9  |-  <. x ,  y >.  e.  _V
1413isseti 2560 . . . . . . . 8  |-  E. w  w  =  <. x ,  y >.
15 19.42v 1786 . . . . . . . 8  |-  ( E. w ( ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  w  =  <. x ,  y
>. )  <->  ( ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  E. w  w  =  <. x ,  y >. )
)
1614, 15mpbiran2 848 . . . . . . 7  |-  ( E. w ( ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  /\  w  =  <. x ,  y
>. )  <->  ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
1710, 16bitri 173 . . . . . 6  |-  ( E. w ( v  = 
<. w ,  z >.  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) )
18173exbii 1498 . . . . 5  |-  ( E. x E. y E. z E. w ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
192, 18bitri 173 . . . 4  |-  ( E. z E. w E. x E. y ( v  =  <. w ,  z
>.  /\  ( w  = 
<. x ,  y >.  /\  ph ) )  <->  E. x E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
20 19.42vv 1788 . . . . 5  |-  ( E. x E. y ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  ( v  =  <. w ,  z
>.  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) )
21202exbii 1497 . . . 4  |-  ( E. w E. z E. x E. y ( v  =  <. w ,  z >.  /\  (
w  =  <. x ,  y >.  /\  ph ) )  <->  E. w E. z ( v  = 
<. w ,  z >.  /\  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) ) )
221, 19, 213bitr3i 199 . . 3  |-  ( E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. w E. z ( v  = 
<. w ,  z >.  /\  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) ) )
2322abbii 2153 . 2  |-  { v  |  E. x E. y E. z ( v  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) }  =  { v  |  E. w E. z ( v  =  <. w ,  z
>.  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) }
24 df-oprab 5494 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
25 df-opab 3816 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { v  |  E. w E. z
( v  =  <. w ,  z >.  /\  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) ) }
2623, 24, 253eqtr4i 2070 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381   {cab 2026   <.cop 3375   {copab 3814   {coprab 5491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-opab 3816  df-oprab 5494
This theorem is referenced by:  reloprab  5531  cbvoprab1  5554  cbvoprab12  5556  cbvoprab3  5558  dmoprab  5563  rnoprab  5565  ssoprab2i  5571  mpt2mptx  5573  resoprab  5575  funoprabg  5578  ov6g  5616  dfoprab3s  5794  xpcomco  6278
  Copyright terms: Public domain W3C validator