ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reloprab Unicode version

Theorem reloprab 5553
Description: An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Assertion
Ref Expression
reloprab  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem reloprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5552 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21relopabi 4463 1  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381   <.cop 3378   Rel wrel 4350   {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352  df-oprab 5516
This theorem is referenced by:  oprabss  5590
  Copyright terms: Public domain W3C validator