ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov6g Unicode version

Theorem ov6g 5638
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  R  =  S )
ov6g.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( <. x ,  y
>.  e.  C  /\  z  =  R ) }
Assertion
Ref Expression
ov6g  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    z, R    x, S, y, z
Allowed substitution hints:    R( x, y)    F( x, y, z)    G( x, y, z)    H( x, y, z)    J( x, y, z)

Proof of Theorem ov6g
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-ov 5515 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 eqid 2040 . . . . . 6  |-  S  =  S
3 biidd 161 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( S  =  S  <-> 
S  =  S ) )
43copsex2g 3983 . . . . . 6  |-  ( ( A  e.  G  /\  B  e.  H )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S )  <->  S  =  S ) )
52, 4mpbiri 157 . . . . 5  |-  ( ( A  e.  G  /\  B  e.  H )  ->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) )
653adant3 924 . . . 4  |-  ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  ->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S ) )
76adantr 261 . . 3  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) )
8 eqeq1 2046 . . . . . . . 8  |-  ( w  =  <. A ,  B >.  ->  ( w  = 
<. x ,  y >.  <->  <. A ,  B >.  = 
<. x ,  y >.
) )
98anbi1d 438 . . . . . . 7  |-  ( w  =  <. A ,  B >.  ->  ( ( w  =  <. x ,  y
>.  /\  z  =  R )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  R ) ) )
10 ov6g.1 . . . . . . . . . 10  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  R  =  S )
1110eqeq2d 2051 . . . . . . . . 9  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( z  =  R  <->  z  =  S ) )
1211eqcoms 2043 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( z  =  R  <-> 
z  =  S ) )
1312pm5.32i 427 . . . . . . 7  |-  ( (
<. A ,  B >.  = 
<. x ,  y >.  /\  z  =  R
)  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  S ) )
149, 13syl6bb 185 . . . . . 6  |-  ( w  =  <. A ,  B >.  ->  ( ( w  =  <. x ,  y
>.  /\  z  =  R )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  z  =  S ) ) )
15142exbidv 1748 . . . . 5  |-  ( w  =  <. A ,  B >.  ->  ( E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
)  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  z  =  S ) ) )
16 eqeq1 2046 . . . . . . 7  |-  ( z  =  S  ->  (
z  =  S  <->  S  =  S ) )
1716anbi2d 437 . . . . . 6  |-  ( z  =  S  ->  (
( <. A ,  B >.  =  <. x ,  y
>.  /\  z  =  S )  <->  ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S ) ) )
18172exbidv 1748 . . . . 5  |-  ( z  =  S  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  z  =  S
)  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  S  =  S ) ) )
19 moeq 2716 . . . . . . 7  |-  E* z 
z  =  R
2019mosubop 4406 . . . . . 6  |-  E* z E. x E. y ( w  =  <. x ,  y >.  /\  z  =  R )
2120a1i 9 . . . . 5  |-  ( w  e.  C  ->  E* z E. x E. y
( w  =  <. x ,  y >.  /\  z  =  R ) )
22 ov6g.2 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( <. x ,  y
>.  e.  C  /\  z  =  R ) }
23 dfoprab2 5552 . . . . . 6  |-  { <. <.
x ,  y >. ,  z >.  |  (
<. x ,  y >.  e.  C  /\  z  =  R ) }  =  { <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ( <. x ,  y
>.  e.  C  /\  z  =  R ) ) }
24 eleq1 2100 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  C  <->  <. x ,  y
>.  e.  C ) )
2524anbi1d 438 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  C  /\  z  =  R )  <->  ( <. x ,  y >.  e.  C  /\  z  =  R
) ) )
2625pm5.32i 427 . . . . . . . . . 10  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  C  /\  z  =  R )
)  <->  ( w  = 
<. x ,  y >.  /\  ( <. x ,  y
>.  e.  C  /\  z  =  R ) ) )
27 an12 495 . . . . . . . . . 10  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  C  /\  z  =  R )
)  <->  ( w  e.  C  /\  ( w  =  <. x ,  y
>.  /\  z  =  R ) ) )
2826, 27bitr3i 175 . . . . . . . . 9  |-  ( ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  ( w  e.  C  /\  (
w  =  <. x ,  y >.  /\  z  =  R ) ) )
29282exbii 1497 . . . . . . . 8  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  E. x E. y ( w  e.  C  /\  ( w  =  <. x ,  y
>.  /\  z  =  R ) ) )
30 19.42vv 1788 . . . . . . . 8  |-  ( E. x E. y ( w  e.  C  /\  ( w  =  <. x ,  y >.  /\  z  =  R ) )  <->  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) )
3129, 30bitri 173 . . . . . . 7  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R ) )  <->  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) )
3231opabbii 3824 . . . . . 6  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( <. x ,  y >.  e.  C  /\  z  =  R
) ) }  =  { <. w ,  z
>.  |  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) }
3322, 23, 323eqtri 2064 . . . . 5  |-  F  =  { <. w ,  z
>.  |  ( w  e.  C  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  z  =  R
) ) }
3415, 18, 21, 33fvopab3ig 5246 . . . 4  |-  ( (
<. A ,  B >.  e.  C  /\  S  e.  J )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  S  =  S
)  ->  ( F `  <. A ,  B >. )  =  S ) )
35343ad2antl3 1068 . . 3  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  S  =  S )  ->  ( F `  <. A ,  B >. )  =  S ) )
367, 35mpd 13 . 2  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( F `  <. A ,  B >. )  =  S )
371, 36syl5eq 2084 1  |-  ( ( ( A  e.  G  /\  B  e.  H  /\  <. A ,  B >.  e.  C )  /\  S  e.  J )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   E.wex 1381    e. wcel 1393   E*wmo 1901   <.cop 3378   {copab 3817   ` cfv 4902  (class class class)co 5512   {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator