ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovg Unicode version

Theorem ovg 5639
Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ovg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ovg.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
ovg.3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
ovg.4  |-  ( ( ta  /\  ( x  e.  R  /\  y  e.  S ) )  ->  E! z ph )
ovg.5  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
Assertion
Ref Expression
ovg  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( ( A F B )  =  C  <->  th ) )
Distinct variable groups:    ps, x    ch, x, y    th, x, y, z    ta, x, y    x, R, y, z    x, S, y, z    x, A, y, z    x, B, y, z    x, C, y, z
Allowed substitution hints:    ph( x, y, z)    ps( y, z)    ch( z)    ta( z)    D( x, y, z)    F( x, y, z)

Proof of Theorem ovg
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 df-ov 5515 . . . . 5  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 ovg.5 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }
32fveq1i 5179 . . . . 5  |-  ( F `
 <. A ,  B >. )  =  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )
41, 3eqtri 2060 . . . 4  |-  ( A F B )  =  ( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )
54eqeq1i 2047 . . 3  |-  ( ( A F B )  =  C  <->  ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  C )
6 eqeq2 2049 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  c  <->  ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  C ) )
7 opeq2 3550 . . . . . . . . . . 11  |-  ( c  =  C  ->  <. <. A ,  B >. ,  c >.  =  <. <. A ,  B >. ,  C >. )
87eleq1d 2106 . . . . . . . . . 10  |-  ( c  =  C  ->  ( <. <. A ,  B >. ,  c >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )
96, 8bibi12d 224 . . . . . . . . 9  |-  ( c  =  C  ->  (
( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  c  <->  <. <. A ,  B >. ,  c >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } )  <->  ( ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) ) )
109imbi2d 219 . . . . . . . 8  |-  ( c  =  C  ->  (
( ( ta  /\  ( A  e.  R  /\  B  e.  S
) )  ->  (
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  c  <->  <. <. A ,  B >. ,  c >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )  <->  ( ( ta  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) ) ) )
11 ovg.4 . . . . . . . . . . . 12  |-  ( ( ta  /\  ( x  e.  R  /\  y  e.  S ) )  ->  E! z ph )
1211ex 108 . . . . . . . . . . 11  |-  ( ta 
->  ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph ) )
1312alrimivv 1755 . . . . . . . . . 10  |-  ( ta 
->  A. x A. y
( ( x  e.  R  /\  y  e.  S )  ->  E! z ph ) )
14 fnoprabg 5602 . . . . . . . . . 10  |-  ( A. x A. y ( ( x  e.  R  /\  y  e.  S )  ->  E! z ph )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )
1513, 14syl 14 . . . . . . . . 9  |-  ( ta 
->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )
16 eleq1 2100 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  e.  R  <->  A  e.  R ) )
1716anbi1d 438 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( x  e.  R  /\  y  e.  S
)  <->  ( A  e.  R  /\  y  e.  S ) ) )
18 eleq1 2100 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
y  e.  S  <->  B  e.  S ) )
1918anbi2d 437 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( A  e.  R  /\  y  e.  S
)  <->  ( A  e.  R  /\  B  e.  S ) ) )
2017, 19opelopabg 4005 . . . . . . . . . 10  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } 
<->  ( A  e.  R  /\  B  e.  S
) ) )
2120ibir 166 . . . . . . . . 9  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  R  /\  y  e.  S ) } )
22 fnopfvb 5215 . . . . . . . . 9  |-  ( ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  Fn  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) }  /\  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  R  /\  y  e.  S ) } )  ->  (
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  c  <->  <. <. A ,  B >. ,  c >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )
2315, 21, 22syl2an 273 . . . . . . . 8  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  c  <->  <. <. A ,  B >. ,  c >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )
2410, 23vtoclg 2613 . . . . . . 7  |-  ( C  e.  D  ->  (
( ta  /\  ( A  e.  R  /\  B  e.  S )
)  ->  ( ( { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } `  <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) ) )
2524com12 27 . . . . . 6  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( C  e.  D  ->  ( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) ) )
2625exp32 347 . . . . 5  |-  ( ta 
->  ( A  e.  R  ->  ( B  e.  S  ->  ( C  e.  D  ->  ( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) ) ) ) )
27263imp2 1119 . . . 4  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) } ) )
28 ovg.1 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2917, 28anbi12d 442 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  e.  R  /\  y  e.  S )  /\  ph ) 
<->  ( ( A  e.  R  /\  y  e.  S )  /\  ps ) ) )
30 ovg.2 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
3119, 30anbi12d 442 . . . . . 6  |-  ( y  =  B  ->  (
( ( A  e.  R  /\  y  e.  S )  /\  ps ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  ch ) ) )
32 ovg.3 . . . . . . 7  |-  ( z  =  C  ->  ( ch 
<->  th ) )
3332anbi2d 437 . . . . . 6  |-  ( z  =  C  ->  (
( ( A  e.  R  /\  B  e.  S )  /\  ch ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
3429, 31, 33eloprabg 5592 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
3534adantl 262 . . . 4  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S )  /\  ph ) }  <->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
3627, 35bitrd 177 . . 3  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( ( { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R  /\  y  e.  S
)  /\  ph ) } `
 <. A ,  B >. )  =  C  <->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
375, 36syl5bb 181 . 2  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( ( A F B )  =  C  <-> 
( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
38 biidd 161 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( ( A  e.  R  /\  B  e.  S )  /\  th ) 
<->  ( ( A  e.  R  /\  B  e.  S )  /\  th ) ) )
3938bianabs 543 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( ( A  e.  R  /\  B  e.  S )  /\  th ) 
<->  th ) )
40393adant3 924 . . 3  |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  D )  ->  ( ( ( A  e.  R  /\  B  e.  S )  /\  th ) 
<->  th ) )
4140adantl 262 . 2  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( ( ( A  e.  R  /\  B  e.  S )  /\  th ) 
<->  th ) )
4237, 41bitrd 177 1  |-  ( ( ta  /\  ( A  e.  R  /\  B  e.  S  /\  C  e.  D ) )  -> 
( ( A F B )  =  C  <->  th ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885   A.wal 1241    = wceq 1243    e. wcel 1393   E!weu 1900   <.cop 3378   {copab 3817    Fn wfn 4897   ` cfv 4902  (class class class)co 5512   {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-ov 5515  df-oprab 5516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator