Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ov | Unicode version |
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation and its arguments and - will be useful for proving meaningful theorems. For example, if class is the operation + and arguments and are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes and/or are proper classes (i.e. are not sets); see ovprc1 5541 and ovprc2 5542. On the other hand, we often find uses for this definition when is a proper class. is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5516. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
df-ov |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cB | . . 3 | |
3 | cF | . . 3 | |
4 | 1, 2, 3 | co 5512 | . 2 |
5 | 1, 2 | cop 3378 | . . 3 |
6 | 5, 3 | cfv 4902 | . 2 |
7 | 4, 6 | wceq 1243 | 1 |
Colors of variables: wff set class |
This definition is referenced by: oveq 5518 oveq1 5519 oveq2 5520 nfovd 5534 fnovex 5538 ovexg 5539 ovprc 5540 fnotovb 5548 ffnov 5605 eqfnov 5607 fnovim 5609 ovid 5617 ovidig 5618 ov 5620 ovigg 5621 ov6g 5638 ovg 5639 ovres 5640 fovrn 5643 fnrnov 5646 foov 5647 fnovrn 5648 funimassov 5650 ovelimab 5651 ovconst2 5652 elmpt2cl 5698 mpt2fvex 5829 oprab2co 5839 algrflem 5850 algrflemg 5851 mpt2xopn0yelv 5854 ovtposg 5874 addpiord 6414 mulpiord 6415 addvalex 6920 cnref1o 8582 ioof 8840 frecuzrdgrrn 9194 frec2uzrdg 9195 frecuzrdgsuc 9201 cnrecnv 9510 |
Copyright terms: Public domain | W3C validator |