Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuc Unicode version

Theorem frecuzrdgsuc 9201
 Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9185 for the description of as the mapping from to . (Contributed by Jim Kingdon, 28-May-2020.)
Hypotheses
Ref Expression
frec2uz.1
frec2uz.2 frec
uzrdg.s
uzrdg.a
uzrdg.f
uzrdg.2 frec
frecuzrdgfn.3
Assertion
Ref Expression
frecuzrdgsuc
Distinct variable groups:   ,   ,,   ,   ,,   ,,   ,,   ,,
Allowed substitution hints:   ()   (,)   (,)   ()   (,)

Proof of Theorem frecuzrdgsuc
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . . . . 7
21adantr 261 . . . . . 6
3 frec2uz.2 . . . . . 6 frec
4 uzrdg.s . . . . . . 7
54adantr 261 . . . . . 6
6 uzrdg.a . . . . . . 7
76adantr 261 . . . . . 6
8 uzrdg.f . . . . . . 7
98adantlr 446 . . . . . 6
10 uzrdg.2 . . . . . 6 frec
11 peano2uz 8526 . . . . . . 7
1211adantl 262 . . . . . 6
132, 3, 5, 7, 9, 10, 12frecuzrdglem 9197 . . . . 5
14 frecuzrdgfn.3 . . . . . 6
1514adantr 261 . . . . 5
1613, 15eleqtrrd 2117 . . . 4
171, 3, 4, 6, 8, 10, 14frecuzrdgfn 9198 . . . . . . 7
18 fnfun 4996 . . . . . . 7
1917, 18syl 14 . . . . . 6
20 funopfv 5213 . . . . . 6
2119, 20syl 14 . . . . 5
2221adantr 261 . . . 4
2316, 22mpd 13 . . 3
241, 3frec2uzf1od 9192 . . . . . . . . 9
25 f1ocnvdm 5421 . . . . . . . . 9
2624, 25sylan 267 . . . . . . . 8
272, 3, 26frec2uzsucd 9187 . . . . . . 7
28 f1ocnvfv2 5418 . . . . . . . . 9
2924, 28sylan 267 . . . . . . . 8
3029oveq1d 5527 . . . . . . 7
3127, 30eqtrd 2072 . . . . . 6
32 peano2 4318 . . . . . . . 8
3326, 32syl 14 . . . . . . 7
34 f1ocnvfv 5419 . . . . . . . 8
3524, 34sylan 267 . . . . . . 7
3633, 35syldan 266 . . . . . 6
3731, 36mpd 13 . . . . 5
3837fveq2d 5182 . . . 4
3938fveq2d 5182 . . 3
4023, 39eqtrd 2072 . 2
41 zex 8254 . . . . . . . . . . 11
42 uzssz 8492 . . . . . . . . . . 11
4341, 42ssexi 3895 . . . . . . . . . 10
44 mpt2exga 5835 . . . . . . . . . 10
4543, 44mpan 400 . . . . . . . . 9
46 vex 2560 . . . . . . . . . 10
47 fvexg 5194 . . . . . . . . . 10
4846, 47mpan2 401 . . . . . . . . 9
495, 45, 483syl 17 . . . . . . . 8
5049alrimiv 1754 . . . . . . 7
51 opelxp 4374 . . . . . . . . 9
521, 6, 51sylanbrc 394 . . . . . . . 8
5352adantr 261 . . . . . . 7
54 frecsuc 5991 . . . . . . 7 frec frec
5550, 53, 26, 54syl3anc 1135 . . . . . 6 frec frec
5610fveq1i 5179 . . . . . 6 frec
5710fveq1i 5179 . . . . . . 7 frec
5857fveq2i 5181 . . . . . 6 frec
5955, 56, 583eqtr4g 2097 . . . . 5
602, 3, 5, 7, 9, 10, 26frec2uzrdg 9195 . . . . . . 7
6160fveq2d 5182 . . . . . 6
62 df-ov 5515 . . . . . 6
6361, 62syl6eqr 2090 . . . . 5
642, 3, 26frec2uzuzd 9188 . . . . . 6
652, 3, 5, 7, 9, 10frecuzrdgrrn 9194 . . . . . . . 8
6626, 65mpdan 398 . . . . . . 7
67 xp2nd 5793 . . . . . . 7
6866, 67syl 14 . . . . . 6
6930, 12eqeltrd 2114 . . . . . . 7
709caovclg 5653 . . . . . . . 8
7170, 64, 68caovcld 5654 . . . . . . 7
72 opexg 3964 . . . . . . 7
7369, 71, 72syl2anc 391 . . . . . 6
74 oveq1 5519 . . . . . . . 8
75 oveq1 5519 . . . . . . . 8
7674, 75opeq12d 3557 . . . . . . 7
77 oveq2 5520 . . . . . . . 8
7877opeq2d 3556 . . . . . . 7
79 oveq1 5519 . . . . . . . . 9
80 oveq1 5519 . . . . . . . . 9
8179, 80opeq12d 3557 . . . . . . . 8
82 oveq2 5520 . . . . . . . . 9
8382opeq2d 3556 . . . . . . . 8
8481, 83cbvmpt2v 5584 . . . . . . 7
8576, 78, 84ovmpt2g 5635 . . . . . 6
8664, 68, 73, 85syl3anc 1135 . . . . 5
8759, 63, 863eqtrd 2076 . . . 4
8887fveq2d 5182 . . 3
89 op2ndg 5778 . . . 4
9069, 71, 89syl2anc 391 . . 3
9188, 90eqtrd 2072 . 2
92 simpr 103 . . . . . . 7
932, 3, 5, 7, 9, 10, 92frecuzrdglem 9197 . . . . . 6
9493, 15eleqtrrd 2117 . . . . 5
95 funopfv 5213 . . . . . . 7
9619, 95syl 14 . . . . . 6
9796adantr 261 . . . . 5
9894, 97mpd 13 . . . 4
9998eqcomd 2045 . . 3
10029, 99oveq12d 5530 . 2
10140, 91, 1003eqtrd 2076 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wal 1241   wceq 1243   wcel 1393  cvv 2557  cop 3378   cmpt 3818   csuc 4102  com 4313   cxp 4343  ccnv 4344   crn 4346   wfun 4896   wfn 4897  wf1o 4901  cfv 4902  (class class class)co 5512   cmpt2 5514  c2nd 5766  freccfrec 5977  c1 6890   caddc 6892  cz 8245  cuz 8473 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474 This theorem is referenced by:  iseqp1  9225
 Copyright terms: Public domain W3C validator