Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfn Unicode version

Theorem frecuzrdgfn 9198
 Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 9185 for the description of as the mapping from to . (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1
frec2uz.2 frec
uzrdg.s
uzrdg.a
uzrdg.f
uzrdg.2 frec
frecuzrdgfn.3
Assertion
Ref Expression
frecuzrdgfn
Distinct variable groups:   ,   ,,   ,   ,,   ,,   ,,
Allowed substitution hints:   ()   (,)   (,)   ()   (,)

Proof of Theorem frecuzrdgfn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgfn.3 . . . . . . . . 9
21eleq2d 2107 . . . . . . . 8
3 frec2uz.1 . . . . . . . . . 10
4 frec2uz.2 . . . . . . . . . 10 frec
5 uzrdg.s . . . . . . . . . 10
6 uzrdg.a . . . . . . . . . 10
7 uzrdg.f . . . . . . . . . 10
8 uzrdg.2 . . . . . . . . . 10 frec
93, 4, 5, 6, 7, 8frecuzrdgrom 9196 . . . . . . . . 9
10 fvelrnb 5221 . . . . . . . . 9
119, 10syl 14 . . . . . . . 8
122, 11bitrd 177 . . . . . . 7
133, 4, 5, 6, 7, 8frecuzrdgrrn 9194 . . . . . . . . 9
14 eleq1 2100 . . . . . . . . 9
1513, 14syl5ibcom 144 . . . . . . . 8
1615rexlimdva 2433 . . . . . . 7
1712, 16sylbid 139 . . . . . 6
1817ssrdv 2951 . . . . 5
19 xpss 4446 . . . . 5
2018, 19syl6ss 2957 . . . 4
21 df-rel 4352 . . . 4
2220, 21sylibr 137 . . 3
233, 4frec2uzf1od 9192 . . . . . . . . . 10
24 f1ocnvdm 5421 . . . . . . . . . 10
2523, 24sylan 267 . . . . . . . . 9
263, 4, 5, 6, 7, 8frecuzrdgrrn 9194 . . . . . . . . 9
2725, 26syldan 266 . . . . . . . 8
28 xp2nd 5793 . . . . . . . 8
2927, 28syl 14 . . . . . . 7
301eleq2d 2107 . . . . . . . . . . 11
31 fvelrnb 5221 . . . . . . . . . . . 12
329, 31syl 14 . . . . . . . . . . 11
3330, 32bitrd 177 . . . . . . . . . 10
343adantr 261 . . . . . . . . . . . . . . . . . . 19
355adantr 261 . . . . . . . . . . . . . . . . . . 19
366adantr 261 . . . . . . . . . . . . . . . . . . 19
377adantlr 446 . . . . . . . . . . . . . . . . . . 19
38 simpr 103 . . . . . . . . . . . . . . . . . . 19
3934, 4, 35, 36, 37, 8, 38frec2uzrdg 9195 . . . . . . . . . . . . . . . . . 18
4039eqeq1d 2048 . . . . . . . . . . . . . . . . 17
41 vex 2560 . . . . . . . . . . . . . . . . . . 19
42 vex 2560 . . . . . . . . . . . . . . . . . . 19
4341, 42opth2 3977 . . . . . . . . . . . . . . . . . 18
4443simplbi 259 . . . . . . . . . . . . . . . . 17
4540, 44syl6bi 152 . . . . . . . . . . . . . . . 16
46 f1ocnvfv 5419 . . . . . . . . . . . . . . . . 17
4723, 46sylan 267 . . . . . . . . . . . . . . . 16
4845, 47syld 40 . . . . . . . . . . . . . . 15
49 fveq2 5178 . . . . . . . . . . . . . . . 16
5049fveq2d 5182 . . . . . . . . . . . . . . 15
5148, 50syl6 29 . . . . . . . . . . . . . 14
5251imp 115 . . . . . . . . . . . . 13
5341, 42op2ndd 5776 . . . . . . . . . . . . . 14
5453adantl 262 . . . . . . . . . . . . 13
5552, 54eqtr2d 2073 . . . . . . . . . . . 12
5655ex 108 . . . . . . . . . . 11
5756rexlimdva 2433 . . . . . . . . . 10
5833, 57sylbid 139 . . . . . . . . 9
5958alrimiv 1754 . . . . . . . 8
6059adantr 261 . . . . . . 7
61 eqeq2 2049 . . . . . . . . . 10
6261imbi2d 219 . . . . . . . . 9
6362albidv 1705 . . . . . . . 8
6463spcegv 2641 . . . . . . 7
6529, 60, 64sylc 56 . . . . . 6
66 nfv 1421 . . . . . . 7
6766mo2r 1952 . . . . . 6
6865, 67syl 14 . . . . 5
69 dmss 4534 . . . . . . . . . 10
7018, 69syl 14 . . . . . . . . 9
71 dmxpss 4753 . . . . . . . . 9
7270, 71syl6ss 2957 . . . . . . . 8
733adantr 261 . . . . . . . . . . . . 13
745adantr 261 . . . . . . . . . . . . 13
756adantr 261 . . . . . . . . . . . . 13
767adantlr 446 . . . . . . . . . . . . 13
77 simpr 103 . . . . . . . . . . . . 13
7873, 4, 74, 75, 76, 8, 77frecuzrdglem 9197 . . . . . . . . . . . 12
791eleq2d 2107 . . . . . . . . . . . . 13
8079adantr 261 . . . . . . . . . . . 12
8178, 80mpbird 156 . . . . . . . . . . 11
82 opeldmg 4540 . . . . . . . . . . . 12
8341, 82mpan 400 . . . . . . . . . . 11
8429, 81, 83sylc 56 . . . . . . . . . 10
8584ex 108 . . . . . . . . 9
8685ssrdv 2951 . . . . . . . 8
8772, 86eqssd 2962 . . . . . . 7
8887eleq2d 2107 . . . . . 6
8988pm5.32i 427 . . . . 5
90 df-br 3765 . . . . . 6
9190mobii 1937 . . . . 5
9268, 89, 913imtr4i 190 . . . 4
9392ralrimiva 2392 . . 3
94 dffun7 4928 . . 3
9522, 93, 94sylanbrc 394 . 2
96 df-fn 4905 . 2
9795, 87, 96sylanbrc 394 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241   wceq 1243  wex 1381   wcel 1393  wmo 1901  wral 2306  wrex 2307  cvv 2557   wss 2917  cop 3378   class class class wbr 3764   cmpt 3818  com 4313   cxp 4343  ccnv 4344   cdm 4345   crn 4346   wrel 4350   wfun 4896   wfn 4897  wf1o 4901  cfv 4902  (class class class)co 5512   cmpt2 5514  c2nd 5766  freccfrec 5977  c1 6890   caddc 6892  cz 8245  cuz 8473 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474 This theorem is referenced by:  frecuzrdgcl  9199  frecuzrdg0  9200  frecuzrdgsuc  9201  iseqfn  9221
 Copyright terms: Public domain W3C validator