ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfn Unicode version

Theorem frecuzrdgfn 9198
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 9185 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgfn.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdgfn  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)    V( x, y)

Proof of Theorem frecuzrdgfn
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgfn.3 . . . . . . . . 9  |-  ( ph  ->  T  =  ran  R
)
21eleq2d 2107 . . . . . . . 8  |-  ( ph  ->  ( z  e.  T  <->  z  e.  ran  R ) )
3 frec2uz.1 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
4 frec2uz.2 . . . . . . . . . 10  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
5 uzrdg.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  V )
6 uzrdg.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  S )
7 uzrdg.f . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
8 uzrdg.2 . . . . . . . . . 10  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
93, 4, 5, 6, 7, 8frecuzrdgrom 9196 . . . . . . . . 9  |-  ( ph  ->  R  Fn  om )
10 fvelrnb 5221 . . . . . . . . 9  |-  ( R  Fn  om  ->  (
z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
119, 10syl 14 . . . . . . . 8  |-  ( ph  ->  ( z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
122, 11bitrd 177 . . . . . . 7  |-  ( ph  ->  ( z  e.  T  <->  E. w  e.  om  ( R `  w )  =  z ) )
133, 4, 5, 6, 7, 8frecuzrdgrrn 9194 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  e.  ( ( ZZ>= `  C )  X.  S ) )
14 eleq1 2100 . . . . . . . . 9  |-  ( ( R `  w )  =  z  ->  (
( R `  w
)  e.  ( (
ZZ>= `  C )  X.  S )  <->  z  e.  ( ( ZZ>= `  C
)  X.  S ) ) )
1513, 14syl5ibcom 144 . . . . . . . 8  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C
)  X.  S ) ) )
1615rexlimdva 2433 . . . . . . 7  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C )  X.  S ) ) )
1712, 16sylbid 139 . . . . . 6  |-  ( ph  ->  ( z  e.  T  ->  z  e.  ( (
ZZ>= `  C )  X.  S ) ) )
1817ssrdv 2951 . . . . 5  |-  ( ph  ->  T  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 xpss 4446 . . . . 5  |-  ( (
ZZ>= `  C )  X.  S )  C_  ( _V  X.  _V )
2018, 19syl6ss 2957 . . . 4  |-  ( ph  ->  T  C_  ( _V  X.  _V ) )
21 df-rel 4352 . . . 4  |-  ( Rel 
T  <->  T  C_  ( _V 
X.  _V ) )
2220, 21sylibr 137 . . 3  |-  ( ph  ->  Rel  T )
233, 4frec2uzf1od 9192 . . . . . . . . . 10  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
24 f1ocnvdm 5421 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2523, 24sylan 267 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
263, 4, 5, 6, 7, 8frecuzrdgrrn 9194 . . . . . . . . 9  |-  ( (
ph  /\  ( `' G `  v )  e.  om )  ->  ( R `  ( `' G `  v )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
2725, 26syldan 266 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 xp2nd 5793 . . . . . . . 8  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
301eleq2d 2107 . . . . . . . . . . 11  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  <->  <. v ,  z >.  e.  ran  R ) )
31 fvelrnb 5221 . . . . . . . . . . . 12  |-  ( R  Fn  om  ->  ( <. v ,  z >.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
329, 31syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( <. v ,  z
>.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
3330, 32bitrd 177 . . . . . . . . . 10  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
343adantr 261 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  C  e.  ZZ )
355adantr 261 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  S  e.  V )
366adantr 261 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  A  e.  S )
377adantlr 446 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  om )  /\  (
x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
38 simpr 103 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  w  e.  om )
3934, 4, 35, 36, 37, 8, 38frec2uzrdg 9195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  =  <. ( G `  w ) ,  ( 2nd `  ( R `  w )
) >. )
4039eqeq1d 2048 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>. 
<-> 
<. ( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >. )
)
41 vex 2560 . . . . . . . . . . . . . . . . . . 19  |-  v  e. 
_V
42 vex 2560 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
_V
4341, 42opth2 3977 . . . . . . . . . . . . . . . . . 18  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  <->  ( ( G `  w )  =  v  /\  ( 2nd `  ( R `  w ) )  =  z ) )
4443simplbi 259 . . . . . . . . . . . . . . . . 17  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  ->  ( G `  w )  =  v )
4540, 44syl6bi 152 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( G `  w )  =  v ) )
46 f1ocnvfv 5419 . . . . . . . . . . . . . . . . 17  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  w  e.  om )  ->  ( ( G `
 w )  =  v  ->  ( `' G `  v )  =  w ) )
4723, 46sylan 267 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  om )  ->  ( ( G `  w )  =  v  ->  ( `' G `  v )  =  w ) )
4845, 47syld 40 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( `' G `  v )  =  w ) )
49 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( ( `' G `  v )  =  w  ->  ( R `  ( `' G `  v )
)  =  ( R `
 w ) )
5049fveq2d 5182 . . . . . . . . . . . . . . 15  |-  ( ( `' G `  v )  =  w  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
5148, 50syl6 29 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  ( `' G `  v )
) )  =  ( 2nd `  ( R `
 w ) ) ) )
5251imp 115 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
5341, 42op2ndd 5776 . . . . . . . . . . . . . 14  |-  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  w )
)  =  z )
5453adantl 262 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  w
) )  =  z )
5552, 54eqtr2d 2073 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) )
5655ex 108 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
5756rexlimdva 2433 . . . . . . . . . 10  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  <. v ,  z >.  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5833, 57sylbid 139 . . . . . . . . 9  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5958alrimiv 1754 . . . . . . . 8  |-  ( ph  ->  A. z ( <.
v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
6059adantr 261 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A. z
( <. v ,  z
>.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
61 eqeq2 2049 . . . . . . . . . 10  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
z  =  w  <->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
6261imbi2d 219 . . . . . . . . 9  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
( <. v ,  z
>.  e.  T  ->  z  =  w )  <->  ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
6362albidv 1705 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  ( A. z ( <. v ,  z >.  e.  T  ->  z  =  w )  <->  A. z ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
6463spcegv 2641 . . . . . . 7  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( A. z ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) )  ->  E. w A. z (
<. v ,  z >.  e.  T  ->  z  =  w ) ) )
6529, 60, 64sylc 56 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E. w A. z ( <. v ,  z >.  e.  T  ->  z  =  w ) )
66 nfv 1421 . . . . . . 7  |-  F/ w <. v ,  z >.  e.  T
6766mo2r 1952 . . . . . 6  |-  ( E. w A. z (
<. v ,  z >.  e.  T  ->  z  =  w )  ->  E* z <. v ,  z
>.  e.  T )
6865, 67syl 14 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E* z <. v ,  z >.  e.  T )
69 dmss 4534 . . . . . . . . . 10  |-  ( T 
C_  ( ( ZZ>= `  C )  X.  S
)  ->  dom  T  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
7018, 69syl 14 . . . . . . . . 9  |-  ( ph  ->  dom  T  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
71 dmxpss 4753 . . . . . . . . 9  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
7270, 71syl6ss 2957 . . . . . . . 8  |-  ( ph  ->  dom  T  C_  ( ZZ>=
`  C ) )
733adantr 261 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
745adantr 261 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  S  e.  V )
756adantr 261 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
767adantlr 446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
77 simpr 103 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
7873, 4, 74, 75, 76, 8, 77frecuzrdglem 9197 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
791eleq2d 2107 . . . . . . . . . . . . 13  |-  ( ph  ->  ( <. v ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  e.  T  <->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R ) )
8079adantr 261 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  T  <->  <.
v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  ran  R ) )
8178, 80mpbird 156 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  T
)
82 opeldmg 4540 . . . . . . . . . . . 12  |-  ( ( v  e.  _V  /\  ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S )  -> 
( <. v ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  e.  T  ->  v  e.  dom  T ) )
8341, 82mpan 400 . . . . . . . . . . 11  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  T  ->  v  e.  dom  T
) )
8429, 81, 83sylc 56 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  T )
8584ex 108 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  T
) )
8685ssrdv 2951 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  T )
8772, 86eqssd 2962 . . . . . . 7  |-  ( ph  ->  dom  T  =  (
ZZ>= `  C ) )
8887eleq2d 2107 . . . . . 6  |-  ( ph  ->  ( v  e.  dom  T  <-> 
v  e.  ( ZZ>= `  C ) ) )
8988pm5.32i 427 . . . . 5  |-  ( (
ph  /\  v  e.  dom  T )  <->  ( ph  /\  v  e.  ( ZZ>= `  C ) ) )
90 df-br 3765 . . . . . 6  |-  ( v T z  <->  <. v ,  z >.  e.  T
)
9190mobii 1937 . . . . 5  |-  ( E* z  v T z  <->  E* z <. v ,  z
>.  e.  T )
9268, 89, 913imtr4i 190 . . . 4  |-  ( (
ph  /\  v  e.  dom  T )  ->  E* z  v T z )
9392ralrimiva 2392 . . 3  |-  ( ph  ->  A. v  e.  dom  T E* z  v T z )
94 dffun7 4928 . . 3  |-  ( Fun 
T  <->  ( Rel  T  /\  A. v  e.  dom  T E* z  v T z ) )
9522, 93, 94sylanbrc 394 . 2  |-  ( ph  ->  Fun  T )
96 df-fn 4905 . 2  |-  ( T  Fn  ( ZZ>= `  C
)  <->  ( Fun  T  /\  dom  T  =  (
ZZ>= `  C ) ) )
9795, 87, 96sylanbrc 394 1  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   E*wmo 1901   A.wral 2306   E.wrex 2307   _Vcvv 2557    C_ wss 2917   <.cop 3378   class class class wbr 3764    |-> cmpt 3818   omcom 4313    X. cxp 4343   `'ccnv 4344   dom cdm 4345   ran crn 4346   Rel wrel 4350   Fun wfun 4896    Fn wfn 4897   -1-1-onto->wf1o 4901   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   2ndc2nd 5766  freccfrec 5977   1c1 6890    + caddc 6892   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474
This theorem is referenced by:  frecuzrdgcl  9199  frecuzrdg0  9200  frecuzrdgsuc  9201  iseqfn  9221
  Copyright terms: Public domain W3C validator