ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-2nd Structured version   Unicode version

Definition df-2nd 5710
Description: Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 5716 proves that it does this. For example,  2nd `  <. 3 , 4  >.) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 4748 and op2ndb 4747). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
df-2nd  2nd  _V  |->  U.
ran  { }

Detailed syntax breakdown of Definition df-2nd
StepHypRef Expression
1 c2nd 5708 . 2  2nd
2 vx . . 3  setvar
3 cvv 2551 . . 3  _V
42cv 1241 . . . . . 6
54csn 3367 . . . . 5  { }
65crn 4289 . . . 4  ran  { }
76cuni 3571 . . 3  U. ran  { }
82, 3, 7cmpt 3809 . 2  _V  |->  U. ran  { }
91, 8wceq 1242 1  2nd  _V  |->  U.
ran  { }
Colors of variables: wff set class
This definition is referenced by:  2ndvalg  5712  fo2nd  5727  f2ndres  5729
  Copyright terms: Public domain W3C validator