Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndg Unicode version

Theorem op2ndg 5778
 Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
Assertion
Ref Expression
op2ndg

Proof of Theorem op2ndg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3549 . . . 4
21fveq2d 5182 . . 3
32eqeq1d 2048 . 2
4 opeq2 3550 . . . 4
54fveq2d 5182 . . 3
6 id 19 . . 3
75, 6eqeq12d 2054 . 2
8 vex 2560 . . 3
9 vex 2560 . . 3
108, 9op2nd 5774 . 2
113, 7, 10vtocl2g 2617 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wceq 1243   wcel 1393  cop 3378  cfv 4902  c2nd 5766 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-2nd 5768 This theorem is referenced by:  ot2ndg  5780  ot3rdgg  5781  2ndconst  5843  mulpipq  6470  frec2uzrdg  9195  frecuzrdgsuc  9201
 Copyright terms: Public domain W3C validator