Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpt2v Unicode version

Theorem cbvmpt2v 5584
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 3851, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpt2v.1
cbvmpt2v.2
Assertion
Ref Expression
cbvmpt2v
Distinct variable groups:   ,,,,   ,,,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,,,)

Proof of Theorem cbvmpt2v
StepHypRef Expression
1 nfcv 2178 . 2
2 nfcv 2178 . 2
3 nfcv 2178 . 2
4 nfcv 2178 . 2
5 cbvmpt2v.1 . . 3
6 cbvmpt2v.2 . . 3
75, 6sylan9eq 2092 . 2
81, 2, 3, 4, 7cbvmpt2 5583 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1243   cmpt2 5514 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-oprab 5516  df-mpt2 5517 This theorem is referenced by:  frec2uzrdg  9195  frecuzrdgsuc  9201  resqrexlemfp1  9607  resqrex  9624
 Copyright terms: Public domain W3C validator