ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrdg Unicode version

Theorem frec2uzrdg 9195
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function 
F ( x ,  y ) and initial value  A. This lemma shows that evaluating  R at an element of  om gives an ordered pair whose first element is the index (translated from  om to  ( ZZ>= `  C )). See comment in frec2uz0d 9185 which describes  G and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
uzrdg.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzrdg  |-  ( ph  ->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    B( x, y)    R( x, y)    G( x)    V( x, y)

Proof of Theorem frec2uzrdg
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.b . 2  |-  ( ph  ->  B  e.  om )
2 fveq2 5178 . . . . 5  |-  ( z  =  B  ->  ( R `  z )  =  ( R `  B ) )
3 fveq2 5178 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
42fveq2d 5182 . . . . . 6  |-  ( z  =  B  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  B )
) )
53, 4opeq12d 3557 . . . . 5  |-  ( z  =  B  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
62, 5eqeq12d 2054 . . . 4  |-  ( z  =  B  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
76imbi2d 219 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( R `
 z )  = 
<. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >. )  <->  (
ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) ) )
8 fveq2 5178 . . . . 5  |-  ( z  =  (/)  ->  ( R `
 z )  =  ( R `  (/) ) )
9 fveq2 5178 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
108fveq2d 5182 . . . . . 6  |-  ( z  =  (/)  ->  ( 2nd `  ( R `  z
) )  =  ( 2nd `  ( R `
 (/) ) ) )
119, 10opeq12d 3557 . . . . 5  |-  ( z  =  (/)  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
128, 11eqeq12d 2054 . . . 4  |-  ( z  =  (/)  ->  ( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `
 z ) )
>. 
<->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. ) )
13 fveq2 5178 . . . . 5  |-  ( z  =  v  ->  ( R `  z )  =  ( R `  v ) )
14 fveq2 5178 . . . . . 6  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
1513fveq2d 5182 . . . . . 6  |-  ( z  =  v  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  v )
) )
1614, 15opeq12d 3557 . . . . 5  |-  ( z  =  v  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. )
1713, 16eqeq12d 2054 . . . 4  |-  ( z  =  v  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
18 fveq2 5178 . . . . 5  |-  ( z  =  suc  v  -> 
( R `  z
)  =  ( R `
 suc  v )
)
19 fveq2 5178 . . . . . 6  |-  ( z  =  suc  v  -> 
( G `  z
)  =  ( G `
 suc  v )
)
2018fveq2d 5182 . . . . . 6  |-  ( z  =  suc  v  -> 
( 2nd `  ( R `  z )
)  =  ( 2nd `  ( R `  suc  v ) ) )
2119, 20opeq12d 3557 . . . . 5  |-  ( z  =  suc  v  ->  <. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >.  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
)
2218, 21eqeq12d 2054 . . . 4  |-  ( z  =  suc  v  -> 
( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
23 uzrdg.2 . . . . . . 7  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
2423fveq1i 5179 . . . . . 6  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
25 frec2uz.1 . . . . . . . 8  |-  ( ph  ->  C  e.  ZZ )
26 uzrdg.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
27 opexg 3964 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
2825, 26, 27syl2anc 391 . . . . . . 7  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
29 frec0g 5983 . . . . . . 7  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3028, 29syl 14 . . . . . 6  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3124, 30syl5eq 2084 . . . . 5  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
32 frec2uz.2 . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3325, 32frec2uz0d 9185 . . . . . 6  |-  ( ph  ->  ( G `  (/) )  =  C )
3431fveq2d 5182 . . . . . . 7  |-  ( ph  ->  ( 2nd `  ( R `  (/) ) )  =  ( 2nd `  <. C ,  A >. )
)
35 uzid 8487 . . . . . . . . 9  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
3625, 35syl 14 . . . . . . . 8  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
37 op2ndg 5778 . . . . . . . 8  |-  ( ( C  e.  ( ZZ>= `  C )  /\  A  e.  S )  ->  ( 2nd `  <. C ,  A >. )  =  A )
3836, 26, 37syl2anc 391 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. C ,  A >. )  =  A )
3934, 38eqtrd 2072 . . . . . 6  |-  ( ph  ->  ( 2nd `  ( R `  (/) ) )  =  A )
4033, 39opeq12d 3557 . . . . 5  |-  ( ph  -> 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.  =  <. C ,  A >. )
4131, 40eqtr4d 2075 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
42 zex 8254 . . . . . . . . . . . . . . . 16  |-  ZZ  e.  _V
43 uzssz 8492 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= `  C )  C_  ZZ
4442, 43ssexi 3895 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  C )  e.  _V
4544a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  om )  ->  ( ZZ>= `  C )  e.  _V )
46 uzrdg.s . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  e.  V )
4746adantr 261 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  om )  ->  S  e.  V )
48 mpt2exga 5835 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  C )  e.  _V  /\  S  e.  V )  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
4945, 47, 48syl2anc 391 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  om )  ->  ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
)  e.  _V )
50 vex 2560 . . . . . . . . . . . . . 14  |-  z  e. 
_V
5150a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  om )  ->  z  e.  _V )
52 fvexg 5194 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
)  e.  _V  /\  z  e.  _V )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
5349, 51, 52syl2anc 391 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
5453alrimiv 1754 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  A. z
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
5528adantr 261 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  <. C ,  A >.  e.  _V )
56 simpr 103 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  v  e.  om )
57 frecsuc 5991 . . . . . . . . . . 11  |-  ( ( A. z ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V  /\ 
<. C ,  A >.  e. 
_V  /\  v  e.  om )  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  v )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  v
) ) )
5854, 55, 56, 57syl3anc 1135 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  om )  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  v )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  v
) ) )
5923fveq1i 5179 . . . . . . . . . 10  |-  ( R `
 suc  v )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  suc  v )
6023fveq1i 5179 . . . . . . . . . . 11  |-  ( R `
 v )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  v
)
6160fveq2i 5181 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  v
) )
6258, 59, 613eqtr4g 2097 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( R `  suc  v )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  v ) ) )
6362adantr 261 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( R `
 v ) ) )
64 fveq2 5178 . . . . . . . . 9  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( R `
 v ) )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
65 df-ov 5515 . . . . . . . . . 10  |-  ( ( G `  v ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )
6625adantr 261 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  C  e.  ZZ )
6766, 32, 56frec2uzuzd 9188 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  ( G `  v )  e.  (
ZZ>= `  C ) )
68 uzrdg.f . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
6925, 32, 46, 26, 68, 23frecuzrdgrrn 9194 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( R `  v )  e.  ( ( ZZ>= `  C )  X.  S ) )
70 xp2nd 5793 . . . . . . . . . . . 12  |-  ( ( R `  v )  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  ( R `  v
) )  e.  S
)
7169, 70syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  ( 2nd `  ( R `  v
) )  e.  S
)
72 peano2uz 8526 . . . . . . . . . . . . 13  |-  ( ( G `  v )  e.  ( ZZ>= `  C
)  ->  ( ( G `  v )  +  1 )  e.  ( ZZ>= `  C )
)
7367, 72syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v )  +  1 )  e.  ( ZZ>= `  C )
)
7468caovclg 5653 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( z  e.  ( ZZ>= `  C )  /\  w  e.  S
) )  ->  (
z F w )  e.  S )
7574adantlr 446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  om )  /\  (
z  e.  ( ZZ>= `  C )  /\  w  e.  S ) )  -> 
( z F w )  e.  S )
7675, 67, 71caovcld 5654 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  S
)
77 opelxp 4374 . . . . . . . . . . . 12  |-  ( <.
( ( G `  v )  +  1 ) ,  ( ( G `  v ) F ( 2nd `  ( R `  v )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S )  <->  ( (
( G `  v
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  S
) )
7873, 76, 77sylanbrc 394 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )
79 oveq1 5519 . . . . . . . . . . . . 13  |-  ( w  =  ( G `  v )  ->  (
w  +  1 )  =  ( ( G `
 v )  +  1 ) )
80 oveq1 5519 . . . . . . . . . . . . 13  |-  ( w  =  ( G `  v )  ->  (
w F z )  =  ( ( G `
 v ) F z ) )
8179, 80opeq12d 3557 . . . . . . . . . . . 12  |-  ( w  =  ( G `  v )  ->  <. (
w  +  1 ) ,  ( w F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F z ) >. )
82 oveq2 5520 . . . . . . . . . . . . 13  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  ( ( G `  v ) F z )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
8382opeq2d 3556 . . . . . . . . . . . 12  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
84 oveq1 5519 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
x  +  1 )  =  ( w  + 
1 ) )
85 oveq1 5519 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
x F y )  =  ( w F y ) )
8684, 85opeq12d 3557 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( w  +  1 ) ,  ( w F y ) >. )
87 oveq2 5520 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
w F y )  =  ( w F z ) )
8887opeq2d 3556 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  <. (
w  +  1 ) ,  ( w F y ) >.  =  <. ( w  +  1 ) ,  ( w F z ) >. )
8986, 88cbvmpt2v 5584 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
w  e.  ( ZZ>= `  C ) ,  z  e.  S  |->  <. (
w  +  1 ) ,  ( w F z ) >. )
9081, 83, 89ovmpt2g 5635 . . . . . . . . . . 11  |-  ( ( ( G `  v
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  v ) )  e.  S  /\  <. (
( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S ) )  -> 
( ( G `  v ) ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9167, 71, 78, 90syl3anc 1135 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v )
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9265, 91syl5eqr 2086 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9364, 92sylan9eqr 2094 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9463, 93eqtrd 2072 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)
9566, 32, 56frec2uzsucd 9187 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( G `  suc  v )  =  ( ( G `  v )  +  1 ) )
9695adantr 261 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( G `
 suc  v )  =  ( ( G `
 v )  +  1 ) )
9794fveq2d 5182 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
)
9866, 32, 56frec2uzzd 9186 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( G `  v )  e.  ZZ )
9998peano2zd 8363 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v )  +  1 )  e.  ZZ )
10099adantr 261 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( ( G `  v )  +  1 )  e.  ZZ )
10176adantr 261 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  S
)
102 op2ndg 5778 . . . . . . . . . 10  |-  ( ( ( ( G `  v )  +  1 )  e.  ZZ  /\  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) )  e.  S )  ->  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )  =  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) )
103100, 101, 102syl2anc 391 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)  =  ( ( G `  v ) F ( 2nd `  ( R `  v )
) ) )
10497, 103eqtrd 2072 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
10596, 104opeq12d 3557 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  <. ( G `  suc  v ) ,  ( 2nd `  ( R `  suc  v ) ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
10694, 105eqtr4d 2075 . . . . . 6  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. )
107106ex 108 . . . . 5  |-  ( (
ph  /\  v  e.  om )  ->  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
108107expcom 109 . . . 4  |-  ( v  e.  om  ->  ( ph  ->  ( ( R `
 v )  = 
<. ( G `  v
) ,  ( 2nd `  ( R `  v
) ) >.  ->  ( R `  suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. ) ) )
10912, 17, 22, 41, 108finds2 4324 . . 3  |-  ( z  e.  om  ->  ( ph  ->  ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. ) )
1107, 109vtoclga 2619 . 2  |-  ( B  e.  om  ->  ( ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
1111, 110mpcom 32 1  |-  ( ph  ->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393   _Vcvv 2557   (/)c0 3224   <.cop 3378    |-> cmpt 3818   suc csuc 4102   omcom 4313    X. cxp 4343   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   2ndc2nd 5766  freccfrec 5977   1c1 6890    + caddc 6892   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474
This theorem is referenced by:  frecuzrdglem  9197  frecuzrdgfn  9198  frecuzrdgsuc  9201
  Copyright terms: Public domain W3C validator