ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-i2m1 Unicode version

Axiom ax-i2m1 6788
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by theorem axi2m1 6759. (Contributed by NM, 29-Jan-1995.)
Assertion
Ref Expression
ax-i2m1  _i  x.  _i  +  1  0

Detailed syntax breakdown of Axiom ax-i2m1
StepHypRef Expression
1 ci 6713 . . . 4  _i
2 cmul 6716 . . . 4  x.
31, 1, 2co 5455 . . 3  _i  x.  _i
4 c1 6712 . . 3  1
5 caddc 6714 . . 3  +
63, 4, 5co 5455 . 2  _i  x.  _i  +  1
7 cc0 6711 . 2  0
86, 7wceq 1242 1  _i  x.  _i  +  1  0
Colors of variables: wff set class
This axiom is referenced by:  0cn  6817  ine0  7187  ixi  7367  inelr  7368
  Copyright terms: Public domain W3C validator