![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-i2m1 | Unicode version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by theorem axi2m1 6949. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-i2m1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 6891 |
. . . 4
![]() ![]() | |
2 | cmul 6894 |
. . . 4
![]() ![]() | |
3 | 1, 1, 2 | co 5512 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
4 | c1 6890 |
. . 3
![]() ![]() | |
5 | caddc 6892 |
. . 3
![]() ![]() | |
6 | 3, 4, 5 | co 5512 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | cc0 6889 |
. 2
![]() ![]() | |
8 | 6, 7 | wceq 1243 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7019 ine0 7391 ixi 7574 inelr 7575 |
Copyright terms: Public domain | W3C validator |