Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 Unicode version

Theorem axi2m1 6949
 Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 6989. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 6835 . . . . . 6
2 1sr 6836 . . . . . 6
3 mulcnsr 6911 . . . . . 6
41, 2, 1, 2, 3mp4an 403 . . . . 5
5 00sr 6854 . . . . . . . . 9
61, 5ax-mp 7 . . . . . . . 8
7 1idsr 6853 . . . . . . . . . . 11
82, 7ax-mp 7 . . . . . . . . . 10
98oveq2i 5523 . . . . . . . . 9
10 m1r 6837 . . . . . . . . . 10
11 1idsr 6853 . . . . . . . . . 10
1210, 11ax-mp 7 . . . . . . . . 9
139, 12eqtri 2060 . . . . . . . 8
146, 13oveq12i 5524 . . . . . . 7
15 addcomsrg 6840 . . . . . . . 8
161, 10, 15mp2an 402 . . . . . . 7
17 0idsr 6852 . . . . . . . 8
1810, 17ax-mp 7 . . . . . . 7
1914, 16, 183eqtri 2064 . . . . . 6
20 00sr 6854 . . . . . . . . 9
212, 20ax-mp 7 . . . . . . . 8
22 1idsr 6853 . . . . . . . . 9
231, 22ax-mp 7 . . . . . . . 8
2421, 23oveq12i 5524 . . . . . . 7
25 0idsr 6852 . . . . . . . 8
261, 25ax-mp 7 . . . . . . 7
2724, 26eqtri 2060 . . . . . 6
2819, 27opeq12i 3554 . . . . 5
294, 28eqtri 2060 . . . 4
3029oveq1i 5522 . . 3
31 addresr 6913 . . . 4
3210, 2, 31mp2an 402 . . 3
33 m1p1sr 6845 . . . 4
3433opeq1i 3552 . . 3
3530, 32, 343eqtri 2064 . 2
36 df-i 6898 . . . 4
3736, 36oveq12i 5524 . . 3
38 df-1 6897 . . 3
3937, 38oveq12i 5524 . 2
40 df-0 6896 . 2
4135, 39, 403eqtr4i 2070 1
 Colors of variables: wff set class Syntax hints:   wceq 1243   wcel 1393  cop 3378  (class class class)co 5512  cnr 6395  c0r 6396  c1r 6397  cm1r 6398   cplr 6399   cmr 6400  cc0 6889  c1 6890  ci 6891   caddc 6892   cmul 6894 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-enr 6811  df-nr 6812  df-plr 6813  df-mr 6814  df-0r 6816  df-1r 6817  df-m1r 6818  df-c 6895  df-0 6896  df-1 6897  df-i 6898  df-add 6900  df-mul 6901 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator