Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd Unicode version

Theorem nfovd 5534
 Description: Deduction version of bound-variable hypothesis builder nfov 5535. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2
nfovd.3
nfovd.4
Assertion
Ref Expression
nfovd

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 5515 . 2
2 nfovd.3 . . 3
3 nfovd.2 . . . 4
4 nfovd.4 . . . 4
53, 4nfopd 3566 . . 3
62, 5nffvd 5187 . 2
71, 6nfcxfrd 2176 1
 Colors of variables: wff set class Syntax hints:   wi 4  wnfc 2165  cop 3378  cfv 4902  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515 This theorem is referenced by:  nfov  5535  nfnegd  7207
 Copyright terms: Public domain W3C validator