Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfovd | Unicode version |
Description: Deduction version of bound-variable hypothesis builder nfov 5535. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfovd.2 | |
nfovd.3 | |
nfovd.4 |
Ref | Expression |
---|---|
nfovd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5515 | . 2 | |
2 | nfovd.3 | . . 3 | |
3 | nfovd.2 | . . . 4 | |
4 | nfovd.4 | . . . 4 | |
5 | 3, 4 | nfopd 3566 | . . 3 |
6 | 2, 5 | nffvd 5187 | . 2 |
7 | 1, 6 | nfcxfrd 2176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wnfc 2165 cop 3378 cfv 4902 (class class class)co 5512 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 |
This theorem is referenced by: nfov 5535 nfnegd 7207 |
Copyright terms: Public domain | W3C validator |